(a) For angle AFB
tan∠AFB=ABBF
tan∠AFB=1015
∠AFB=33∘41′ answer
For angle BFO
BD=√AB2+AD2
BD=√202+102
BD=10√5 in
OB=12BD
OB=12(10√5)
OB=5√5 in
tan∠BFO=OBBF
tan∠BFO=5√515
∠BFO=36∘42′ answer
For angle AFO
OA=OB
OA=5√5 in
OA2=125
AF2=AB2+BF2
AF2=102+152
AF2=325
AF=5√13 in
OF2=OB2+BF2
OF2=(5√5)2+152
OF2=350
OF=5√14 in
Apply cosine law to triangle AFO
OA2=AF2+OF2−2(AF)(OF)cos∠AFO
125=325+350−2(5√13)(5√14)cos∠AFO
cos∠AFO=325+350−1252(5√13)(5√14)
∠AFO=35∘23′ answer
For angle BOF
tan∠BOF=BFOB
tan∠BOF=155√5
∠BOF=53∘18′ answer
Another solution
∠BOF=90∘−∠BFO
∠BOF=90∘−36∘42′
∠BOF=53∘18′ okay
For angle AOF
Cosine law for triangle AOF
AF2=OA2+OF2−2(OA)(OF)cos∠AOF
325=125+350−2(5√5)(5√14)cos∠AOF
cos∠AOF=125+350−3252(5√5)(5√14)
∠AOF=68∘59′ answer
For angle OFC
CF2=BC2+BF2
CF2=202+152
CF2=625
CF=25 in
OC=OA
OC=5√5 in
OC2=125
Cosine law for triangle OFC
OC2=OF2+CF2−2(OF)(CF)cos∠OFC
125=350+625−2(5√14)(25)cos∠OFC
cos∠OFC=350+625−1252(5√14)(25)
∠OFC=24∘40′ answer
(b) For triangle ABO
AABO=12(10)(10)
AABO=50 in2 answer
For triangle BOF
ABOF=12(OB)(BF)
ABOF=12(5√5)(15)
ABOF=83.85 in2 answer
For triangle AOF
AAOF=12(OA)(OF)sin∠AOF
AAOF=12(5√5)(5√14)sin68∘59′
AAOF=97.62 in2
(c) Distance from B to the plane AOF.
Triangles ABC and AGB are similar
sinα=BCAC=BGAB
20√102+202=x10
x=4√5
tanθ=xBF
tanθ=4√515
θ=30.81∘
sinθ=dBF
d=BFsinθ
d=15sin30.81∘
d=7.682 in answer