Plane Trigonometry
The Six Trigonometric Functions
2. $\cos \theta = \dfrac{b}{c}$
3. $\tan \theta = \dfrac{a}{b}$
4. $\csc \theta = \dfrac{c}{a}$
5. $\sec \theta = \dfrac{c}{b}$
6. $\cot \theta = \dfrac{b}{a}$
Complementary Identities
2. $\cos \theta = \sin (90^\circ - \theta)$
3. $\tan \theta = \cot (90^\circ - \theta)$
4. $\cot \theta = \tan (90^\circ - \theta)$
5. $\sec \theta = \csc (90^\circ - \theta)$
6. $\csc \theta = \sec (90^\circ - \theta)$
Fundamental Identities
2. $\cos \theta = \dfrac{1}{\sec \theta}$
3. $\tan \theta = \dfrac{1}{\cot \theta} = \dfrac{\sin \theta}{\cos \theta}$
4. $\cot \theta = \dfrac{1}{\tan \theta} = \dfrac{\cos \theta}{\sin \theta}$
5. $\sec \theta = \dfrac{1}{\cos \theta}$
6. $\csc \theta = \dfrac{1}{\sin \theta}$
Pythagorean Theorem
Pythagorean Relations
2. $\tan^2 \theta + 1 = \sec^2 \theta$
3. $1 + \cot^2 \theta = \csc^2 \theta$
Sum of Two Angles
2. $\cos (A + B) = \cos A \, \cos B - \sin A \, \sin B$
3. $\tan (A + B) = \dfrac{\tan A + \tan B}{1 - \tan A \, \tan B}$
Difference of Two Angles
2. $\cos (A - B) = \cos A \, \cos B + \sin A \, \sin B$
3. $\tan (A - B) = \dfrac{\tan A - \tan B}{1 + \tan A \, \tan B}$
Double Angle Formulas
2. $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
2a. $\cos 2\theta = 1 - 2\sin^2 \theta$
2b. $\cos 2\theta = 2\cos^2 \theta - 1$
3. $\tan 2\theta = \dfrac{2\tan \theta}{1 - \tan^2 \theta}$
Half Angle Formulas
2. $\cos \frac{1}{2}\theta = \sqrt{\dfrac{1 + \cos \theta}{2}}$
3. $\tan \frac{1}{2}\theta = \dfrac{1 - \cos \theta}{\sin \theta} = \dfrac{\sin \theta}{1 + \cos \theta} = \sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}}$
Powers of Functions
2. $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$
3. $\tan^2 \theta = \dfrac{1 - \cos 2\theta}{1 + \cos 2\theta}$
Product of Functions
2. $\sin A \, \sin B = \frac{1}{2} \big[ \cos (A - B) - \cos (A + B) \big]$
3. $\cos A \, \cos B = \frac{1}{2} \big[ \cos (A + B) + \cos (A - B) \big]$
Sum of Functions
2. $\cos A + \cos B = 2 \cos \frac{1}{2}(A + B) \, \cos \frac{1}{2}(A - B)$
3. $\tan A + \tan B = \dfrac{\sin (A + B)}{\cos A \, \cos B}$
Difference of Functions
2. $\cos A - \cos B = -2 \sin \frac{1}{2}(A + B) \, \sin \frac{1}{2}(A - B)$
3. $\tan A - \tan B = \dfrac{\sin (A - B)}{\cos A \, \cos B}$
Sine Law
Cosine Law
2. $b^2 = a^2 + c^2 - 2ac \cos B$
3. $c^2 = a^2 + b^2 - 2ab \cos C$
Law of Tangents
2. $\dfrac{b - c}{b + c} = \dfrac{\tan \frac{1}{2}(B - C)}{\tan \frac{1}{2}(B + C)}$
3. $\dfrac{c - a}{c + a} = \dfrac{\tan \frac{1}{2}(C - A)}{\tan \frac{1}{2}(C + A)}$
Mollweide's Equations
2. $\dfrac{a - b}{c} = \dfrac{\sin \frac{1}{2}(A - B)}{\cos \frac{1}{2}C}$