Fluid Mechanics and Hydraulics
Pressure
$p = \dfrac{F}{A}$
Absolute Pressure, Gage Pressure, and Atmospheric Pressure
$p_{abs} = p_{gage} + p_{atm}$
Variations in Pressure
$p_2 = p_1 + \gamma h$
Pressure Head
$h = \dfrac{p}{\gamma}$
Total Hydrostatic Force
$F_y = \gamma V$
$F = \sqrt{{F_x}^2 + {F_y}^2}$
Eccentricity
$e = \dfrac{I_g}{A\bar{y}}$
Gravity Dam
$R_y = \Sigma F_v$
$x = \dfrac{RM - OM}{R_y}$
$FS_s = \dfrac{\mu R_y}{R_x} \gt 1.0$
$FS_o = \dfrac{RM}{OM} \gt 1.0$
Buoyancy
$BF = \gamma V_D$
Volume Displaced
$V_D = \dfrac{s_{body}}{s_{liquid}} V = \dfrac{\gamma_{body}}{\gamma_{liquid}} V$
Draft
$D = \dfrac{s_{body}}{s_{liquid}} H = \dfrac{\gamma_{body}}{\gamma_{liquid}} H$
Area Submerged
$A_s = \dfrac{s_{body}}{s_{liquid}} A = \dfrac{\gamma_{body}}{\gamma_{liquid}} A$
Stability of Floating Body
$MG = MB_o \pm GB_o$
Value of MBo
$MB_o = \dfrac{vs}{V_D \sin \theta}$
Thin-walled Pressure Vessel
$\sigma_T = \dfrac{pD}{2t}$
Longitudinal Stress
$\sigma_L = \dfrac{pD}{4t}$
Spherical Shell
$\sigma_L = \dfrac{pD}{4t}$
Spacing of Hoops
$s = \dfrac{2\sigma_h \, A_h}{pD}$
Moving Vessels
$\tan \theta = \dfrac{a}{g}$
Inclined Motion
$\tan \theta = \dfrac{a_H}{g \pm a_V}$
Vertical Motion
$p = \gamma h \left( 1 \pm \dfrac{a}{g} \right)$
Rotating Vessel
$\tan \theta = \dfrac{\omega^2 x}{g}$
$y = \dfrac{\omega^2 x^2}{2g}$
Fluid Flow
$Q = vA$
Velocity Head
$h = \dfrac{v^2}{2g}$
Total Head
$H = \dfrac{v^2}{2g} + \dfrac{p}{\gamma} + z$
Power
$P = Q \gamma H$