The lines connecting the center of marbles will form into a
regular tetrahedron of edge 20 cm.
From triangle ABC
$\cos 30^\circ = \dfrac{10}{AE}$
$AE = \dfrac{10}{\cos 30^\circ} = \dfrac{10}{\frac{\sqrt{3}}{2}}$
$AE = 11.55 \, \text{ mm}$
$CE = AE$
$CE = 11.55 \, \text{ mm}$
Radius of cylinder
$R = 10 + AE = 10 + 11.55$
$R = 21.55 \, \text{ mm}$
Solving for h from right triangle CED
$h^2 + CE^2 = CD^2$
$h^2 + 11.55^2 = 20^2$
$h = 16.33 \, \text{ mm}$
Depth of water
$H = 20 + h = 20 + 16.33$
$H = 36.33 \, \text{ mm}$
Volume of water
$V_{water} = V_{cylinder} - 4V_{marble}$
$V_{water} = \pi (21.55^2)(36.33) - 4 [ \, \frac{4}{3}\pi (10^3) \, ]$
$V_{water} = 36\,248.98 \, \text{ mm}^3$ answer