Plane Areas in Rectangular Coordinates | Applications of Integration

There are two methods for finding the area bounded by curves in rectangular coordinates. These are...

  1. by using a horizontal element (called strip) of area, and
  2. by using a vertical strip of area.

The strip is in the form of a rectangle with area equal to length × width, with width equal to the differential element. To find the total area enclosed by specified curves, it is necessary to sum up a series of rectangles defined by the strip.
 

Using Horizontal Strip

Trigonometric Substitution | Techniques of Integration

Trigonometric substitution is employed to integrate expressions involving functions of (a2u2), (a2 + u2), and (u2a2) where "a" is a constant and "u" is any algebraic function. Substitutions convert the respective functions to expressions in terms of trigonometric functions. The substitution is more useful but not limited to functions involving radicals.
 

Inverse Trigonometric Functions | Fundamental Integration Formulas

In applying the formula (Example: Formula 1 below), it is important to note that the numerator du is the differential of the variable quantity u which appears squared inside the square root symbol. We mentally put the quantity under the radical into the form of the square of the constant minus the square of the variable.
 
1. $\displaystyle \int \dfrac{du}{\sqrt{a^2 - u^2}} = \arcsin \, \dfrac{u}{a} + C, \,\,\, a > 0$

2. $\displaystyle \int \dfrac{du}{a^2 + u^2} = \dfrac{1}{a}\arctan \, \dfrac{u}{a} + C$

3. $\displaystyle \int \dfrac{du}{u\sqrt{u^2 - a^2}} = \dfrac{1}{a} {\rm arcsec} \, \dfrac{u}{a} + C$
 

Trigonometric Functions | Fundamental Integration Formulas

Basic Formulas

1. $\displaystyle \int \sin u \, du = -\cos u + C$

2. $\displaystyle \int \cos u \, du = \sin u + C$

3. $\displaystyle \int \sec^2 u \, du = \tan u + C$

4. $\displaystyle \int \csc^2 u \, du = -\cot u + C$

5. $\displaystyle \int \sec u \, \tan u \, du = \sec u + C$

6. $\displaystyle \int \csc u \, \cot u \, du = -\csc u + C$