Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
Recent comments
- Determine the least depth…1 week 5 days ago
- Solve mo ang h manually…3 weeks 2 days ago
- Paano kinuha yung height na…3 weeks 2 days ago
- It's the unit conversion…1 month ago
- Refer to the figure below…4 weeks 1 day ago
- Yes.4 months 3 weeks ago
- Sir what if we want to find…4 months 3 weeks ago
- Hello po! Question lang po…5 months 1 week ago
- 400000=120[14π(D2−10000)]
(…6 months 2 weeks ago - Use integration by parts for…7 months 1 week ago
Obtain the differential…
Kindly check my solution below. Do you have any answer key for each problem? It will be of great help to those who wish to answer if you post it here.
$Cx \sin y + x^2 y = Cy$
$x^2 y = C(y - x \sin y)$
$\dfrac{x^2 y}{y - x \sin y} = C$
$\dfrac{(y - x \sin y)(x^2 y' + 2xy) - x^2 y \left[ y' - (x \cos y y' + \sin y)\right]}{(y - x \sin y)^2} = 0$
$(y - x \sin y)(x^2 y' + 2xy) - x^2 y \left[ y' - (x \cos y y' + \sin y)\right] = 0$
$x^2 (y - x \sin y)y' + 2xy(y - x \sin y) - x^2 y y' + x^3 y \cos y y' + x^2 y \sin y = 0$
$\left[ x^2 (y - x \sin y) - x^2 y + x^3 y \cos y \right] y' + 2xy(y - x \sin y) + x^2 y \sin y = 0$
$(x^2 y - x^3 \sin y - x^2 y + x^3 y \cos y) y' + 2xy^2 - 2x^2y \sin y + x^2 y \sin y = 0$
$(-x^3 \sin y + x^3 y \cos y) y' + 2xy^2 - x^2 y \sin y = 0$
$x^3(y \cos y - \sin y) y' = x^2 y \sin y - 2xy^2$
$x^3(y \cos y - \sin y) y' = x(xy \sin y - 2y^2)$
$y' = \dfrac{x(xy \sin y - 2y^2)}{x^3(y \cos y - \sin y)}$
$y' = \dfrac{xy \sin y - 2y^2}{x^2(y \cos y - \sin y)}$