Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.2 months 1 week ago
- Sir what if we want to find…2 months 1 week ago
- Hello po! Question lang po…2 months 3 weeks ago
- 400000=120[14π(D2−10000)]
(…3 months 4 weeks ago - Use integration by parts for…4 months 3 weeks ago
- need answer4 months 3 weeks ago
- Yes you are absolutely right…4 months 4 weeks ago
- I think what is ask is the…4 months 4 weeks ago
- $\cos \theta = \dfrac{2}{…5 months ago
- Why did you use (1/SQ root 5…5 months ago
Obtain the differential…
Kindly check my solution below. Do you have any answer key for each problem? It will be of great help to those who wish to answer if you post it here.
$Cx \sin y + x^2 y = Cy$
$x^2 y = C(y - x \sin y)$
$\dfrac{x^2 y}{y - x \sin y} = C$
$\dfrac{(y - x \sin y)(x^2 y' + 2xy) - x^2 y \left[ y' - (x \cos y y' + \sin y)\right]}{(y - x \sin y)^2} = 0$
$(y - x \sin y)(x^2 y' + 2xy) - x^2 y \left[ y' - (x \cos y y' + \sin y)\right] = 0$
$x^2 (y - x \sin y)y' + 2xy(y - x \sin y) - x^2 y y' + x^3 y \cos y y' + x^2 y \sin y = 0$
$\left[ x^2 (y - x \sin y) - x^2 y + x^3 y \cos y \right] y' + 2xy(y - x \sin y) + x^2 y \sin y = 0$
$(x^2 y - x^3 \sin y - x^2 y + x^3 y \cos y) y' + 2xy^2 - 2x^2y \sin y + x^2 y \sin y = 0$
$(-x^3 \sin y + x^3 y \cos y) y' + 2xy^2 - x^2 y \sin y = 0$
$x^3(y \cos y - \sin y) y' = x^2 y \sin y - 2xy^2$
$x^3(y \cos y - \sin y) y' = x(xy \sin y - 2y^2)$
$y' = \dfrac{x(xy \sin y - 2y^2)}{x^3(y \cos y - \sin y)}$
$y' = \dfrac{xy \sin y - 2y^2}{x^2(y \cos y - \sin y)}$