Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…3 weeks 1 day ago
- Determine the least depth…10 months 2 weeks ago
- Solve mo ang h manually…3 weeks 1 day ago
- Paano kinuha yung height na…11 months ago
- It's the unit conversion…11 months 1 week ago
- Refer to the figure below…11 months ago
- where do you get the sqrt413 weeks 1 day ago
- Thank you so much3 weeks ago
- How did you get the 2.8 mins…3 weeks ago
- How did you get the distance…3 weeks ago


Obtain the differential…
Kindly check my solution below. Do you have any answer key for each problem? It will be of great help to those who wish to answer if you post it here.
$Cx \sin y + x^2 y = Cy$
$x^2 y = C(y - x \sin y)$
$\dfrac{x^2 y}{y - x \sin y} = C$
$\dfrac{(y - x \sin y)(x^2 y' + 2xy) - x^2 y \left[ y' - (x \cos y y' + \sin y)\right]}{(y - x \sin y)^2} = 0$
$(y - x \sin y)(x^2 y' + 2xy) - x^2 y \left[ y' - (x \cos y y' + \sin y)\right] = 0$
$x^2 (y - x \sin y)y' + 2xy(y - x \sin y) - x^2 y y' + x^3 y \cos y y' + x^2 y \sin y = 0$
$\left[ x^2 (y - x \sin y) - x^2 y + x^3 y \cos y \right] y' + 2xy(y - x \sin y) + x^2 y \sin y = 0$
$(x^2 y - x^3 \sin y - x^2 y + x^3 y \cos y) y' + 2xy^2 - 2x^2y \sin y + x^2 y \sin y = 0$
$(-x^3 \sin y + x^3 y \cos y) y' + 2xy^2 - x^2 y \sin y = 0$
$x^3(y \cos y - \sin y) y' = x^2 y \sin y - 2xy^2$
$x^3(y \cos y - \sin y) y' = x(xy \sin y - 2y^2)$
$y' = \dfrac{x(xy \sin y - 2y^2)}{x^3(y \cos y - \sin y)}$
$y' = \dfrac{xy \sin y - 2y^2}{x^2(y \cos y - \sin y)}$