Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…3 days 12 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…3 days 12 hours ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt413 days 12 hours ago
- Thank you so much2 days 22 hours ago
- How did you get the 2.8 mins…2 days 21 hours ago
- How did you get the distance…2 days 21 hours ago


Based on the differentiation…
Based on the differentiation $dA / db$, It can be seen that $a$ is constant from the equation.
$$A = \frac{1}{4}(b + a) \sqrt{4a^2 - (b - a)^2}$$
Where $u = b + a$ and $v = \sqrt{4a^2 - (b - a)^2}$ from which $\dfrac{du}{db} = 1$. For $dv$ however, we will use the formula $d\left( \sqrt{u} \right) = \dfrac{du}{2\sqrt{u}}$. Hence, $\dfrac{dv}{db} = \dfrac{-2(b - a)}{2\sqrt{4a^2 - (b - a)^2}}$
Now, apply the whole $d(uv)$ to the equation:
$$\dfrac{dA}{db} = \dfrac{1}{4} \left[ (b + a) \cdot \dfrac{-2(b - a)}{2\sqrt{4a^2 - (b - a)^2}} + \sqrt{4a^2 - (b - a)^2} \cdot 1 \right] = 0$$
The zero is the concept of maxima and minima. You need to go back to the basic concept of optimization to understand why the equation is equated to zero.