Trigonometric Functions | Fundamental Integration Formulas
Basic Formulas
1. $\displaystyle \int \sin u \, du = -\cos u + C$
2. $\displaystyle \int \cos u \, du = \sin u + C$
3. $\displaystyle \int \sec^2 u \, du = \tan u + C$
4. $\displaystyle \int \csc^2 u \, du = -\cot u + C$
5. $\displaystyle \int \sec u \, \tan u \, du = \sec u + C$
6. $\displaystyle \int \csc u \, \cot u \, du = -\csc u + C$
Formulas Derived from Logarithmic Function
7. $\displaystyle \int \tan u \, du = \ln (\sec u) + C = -\ln (\cos u) + C$
8. $\displaystyle \int \cot u \, du = \ln (\sin u) + C$
9. $\displaystyle \int \sec u \, du = \ln (\sec u + \tan u) + C$
10. $\displaystyle \int \csc u \, du = \ln (\csc u - \cot u) + C = -\ln (\csc u + \cot u) + C$
The six basic formulas for integration involving trigonometric functions are stated in terms of appropriate pairs of functions. An integral involving $\sin x$ and $\tan x$, which the simple integration formula cannot be applied, we must put the integrand entirely in terms of $\sin x$ and $\cos x$ or in terms of $\tan x$ and $\sec x$. Notice that these formulas are reverse formulas in Differential Calculus.
The formulas derived from trigonometric function can be traced as follows:
$\displaystyle \int \tan u \, du$
$\,\,\,\,\,\,\,\,\, = \displaystyle \int \dfrac{\sin u \, du}{\cos u}$
$\,\,\,\,\,\,\,\,\, = -\displaystyle \int \dfrac{-\sin u \, du}{\cos u}$
$\,\,\,\,\,\,\,\,\, = -\ln (\cos u) + C$ → Formula
$\,\,\,\,\,\,\,\,\, = \ln (\cos u)^{-1} + C$
$\,\,\,\,\,\,\,\,\, = \ln \left(\dfrac{1}{\cos u} \right) + C$
$\,\,\,\,\,\,\,\,\, = \ln (\sec u) + C$ → Formula