$\sin 20^\circ = \dfrac{R_B}{W}$
$R_B = W \sin 20^\circ$
$R_{BH} = R_B \cos 20^\circ = W \sin 20^\circ \cos 20^\circ$
$R_{BV} = R_B \sin 20^\circ = W \sin 20^\circ \sin 20^\circ = W \sin^2 20^\circ$
$\Sigma M_A = 0$
$R_{BH} (4.8 \sin \theta) + R_{BV} (4.8 \cos \theta) = W(2.4 \cos \theta)$
$4.8R_{BH} \sin \theta = 2.4W \cos \theta - 4.8R_{BV} \cos \theta$
$2R_{BH} \sin \theta = W \cos \theta - 2R_{BV} \cos \theta$
$2R_{BH} \sin \theta = (W - 2R_{BV}) \cos \theta$
$\dfrac{\sin \theta}{\cos \theta} = \dfrac{W - 2R_{BV}}{2R_{BH}}$
$\tan \theta = \dfrac{W - 2R_{BV}}{2R_{BH}}$
$\tan \theta = \dfrac{W - 2W \sin^2 20^\circ}{2W \sin 20^\circ \cos 20^\circ}$
$\tan \theta = \dfrac{1 - 2 \sin^2 20^\circ}{2 \sin 20^\circ \cos 20^\circ}$
$\theta = \arctan \left( \dfrac{1 - 2 \sin^2 20^\circ}{2 \sin 20^\circ \cos 20^\circ} \right)$
$\theta = \arctan 1.191753593$
$\theta = 50^\circ$ answer