Sum up forces normal to the incline in block B
$N_B = 2700 \cos 60^\circ + C \sin 30^\circ$
$N_B = 1350 + 0.5C$
Amount of friction for impending motion of block B
$f_B = \mu N_B = 0.25(1350 + 0.5C)$
$f_B = 337.5 + 0.125C$
Sum up all forces parallel to the incline in block B
$f_B + C \cos 30^\circ = 2700 \sin 60^\circ$
$(337.5 + 0.125C) + C \cos 30^\circ = 2700 \sin 60^\circ$
$0.991C = 2000.77$
$C = 2018.89 \, \text{ N}$
Summation of vertical forces acting on block A
$N_A = W_A + C \sin 30^\circ$
$N_A = W_A + 2018.89 \sin 30^\circ$
$N_A = W_A + 1009.44$
Amount of friction under block A at impending motion
$f_A = \mu N_A = 0.25(W_A + 1009.44)$
$f_A = 0.25W_A + 252.36$
Summation of horizontal forces on block A
$f_A = C \cos 30^\circ$
$0.25W_A + 252.36 = 2018.89 \cos 30^\circ$
$W_A = 5984.20 \, \text{ N}$ answer