At Joint A
$\Sigma F_y = 0$
$F_{AC} \sin 30^\circ = 1000$
$F_{AC} = 2000 \, \text{lb}$ compression
$\Sigma F_x = 0$
$F_{AB} = F_{AC} \cos 30^\circ$
$F_{AB} = 2000 \cos 30^\circ$
$F_{AB} = 1732.05 \, \text{lb}$ tension
At Joint C
$\Sigma F_V = 0$
$F_{BC} = 0$
$\Sigma F_H = 0$
$F_{CE} = 2000 \, \text{lb}$ compression
At Joint B
$\Sigma F_y = 0$
$F_{BE} \sin 60^\circ = 1000$
$F_{BE} = 1154.70 \, \text{lb}$ compression
From the FBD of the whole truss shown below
$b = 3a \sin 30^\circ$
$b = 1.5a$
Solve for the reaction at support H
$\Sigma M_G = 0$
$R_H(b) = 1000(3a) + 1000(2a) + 1000(a)$
$R_H(1.5a) = 6000a$
$R_H = 4000 \, \text{lb}$
Thus,
$F_{EH} = 4000 \, \text{lb}$ compression
At Joint E
$\Sigma F_H = 0$
$F_{EF} \cos 60^\circ + 1154.70 \sin 60^\circ + 2000 = 4000$
$F_{EF} = 2000 \, \text{lb}$ tension
$\Sigma F_V = 0$
$F_{DE} + 1154.70 \cos 60^\circ = F_{EF} \sin 60^\circ$
$F_{DE} + 1154.70 \cos 60^\circ = 2000 \sin 60^\circ$
$F_{DE} = 1154.7 \, \text{lb}$ compression
We may check FDE by Method of Sections (Optional)
$\Sigma M_G = 0$
$F_{DE}(a \cos 30^\circ) = 1000a$
$F_{DE} = 1154.7 \, \text{lb}$ compression Check!
Summary (Answers)
AB = 1732.05 lb tension
BE = 1154.70 lb compression
DE = 1154.70 lb compression
Hello po sir, may ask lang po
Hello po sir, may ask lang po ako, diba po Hinge yung nasa Joint H? Hindi na po siya lagyan ng Vertical Reaction Hy? Gaya po ng sa joint G?
Hindi po ako professional,
In reply to Hello po sir, may ask lang po by arcdan.x
Hindi po ako professional, student lang din po. Actually meron. 2 reaction nyan sa H since Pin/ Hinge sya. Hindi nya lang nilagay since nag moment sya sa G at parallel sya sa moment point , at zero ang moment nya
.