$\Sigma M_F = 0$

$15R_A = (400 + 200)(12) + (800 + 200)(6)$

$R_A = 880 \, \text{kN}$

$\Sigma M_A = 0$

$15R_F = (400 + 200)(3) + (800 + 200)(9)$

$R_F = 720 \, \text{kN}$

**At Joint A**

$\Sigma F_V = 0$

$\frac{2}{\sqrt{5}}F_{AB} = 880$

$F_{AB} = 983.87 \, \text{kN}$ compression

$\Sigma F_H = 0$

$F_{AC} = \frac{1}{\sqrt{5}}F_{AB}$

$F_{AC} = \frac{1}{\sqrt{5}}(983.87)$

$F_{AC} = 440 \, \text{kN}$ tension

**At Joint B**

$\Sigma F_H = 0$

$\frac{2}{\sqrt{5}}F_{BD} = \frac{1}{\sqrt{5}}(983.87)$

$F_{BD} = 491.94 \, \text{kN}$ compression

$\Sigma F_V = 0$

$F_{BC} + 400 = \frac{2}{\sqrt{5}}(983.87) + \frac{1}{\sqrt{5}}F_{BD}$

$F_{BC} + 400 = \frac{2}{\sqrt{5}}(983.87) + \frac{1}{\sqrt{5}}(491.94)$

$F_{BC} = 700 \, \text{kN}$ tension

**At Joint C**

$\Sigma F_V = 0$

$\frac{1}{\sqrt{5}}F_{CD} + 200 = 700$

$F_{CD} = 1118.03 \, \text{kN}$ compression

$\Sigma F_H = 0$

$F_{CE} = 440 + \frac{2}{\sqrt{5}}F_{CD}$

$F_{CE} = 440 + \frac{2}{\sqrt{5}}(1118.03)$

$F_{CE} = 1440 \, \text{kN}$ tension

**At Joint E**

By inspection

$F_{DE} = 200 \, \text{kN}$ tension

$F_{EF} = 1440 \, \text{kN}$ tension

**At Joint D**

$\Sigma F_H = 0$

$\frac{2}{\sqrt{5}}F_{DF} = \frac{2}{\sqrt{5}}(491.94) + \frac{2}{\sqrt{5}}(1118.03)$

$F_{DF} = 1609.97 \, \text{kN}$ compression

$\Sigma F_V = 0$

$\frac{1}{\sqrt{5}}F_{DE} + \frac{1}{\sqrt{5}}(1118.03) = \frac{1}{\sqrt{5}}(491.94) + 800 + 200$

$\frac{1}{\sqrt{5}}(1609.97) + \frac{1}{\sqrt{5}}(1118.03) = \frac{1}{\sqrt{5}}(491.94) + 800 + 200$

$1220 = 1220$ *Check!*

**At Joint F**

$\Sigma F_V = 0$

$\frac{1}{\sqrt{5}}(1609.97) = 720$

$720 = 720$ *Check!*

$\Sigma F_H = 0$

$\frac{2}{\sqrt{5}}(1609.97) = 1440$

$1440 = 1440$ *Check!*

**Summary**

AB = 983.87 kN compression

AC = 440 kN tension

BD = 491.94 kN compression

BC = 700 kN tension

CD = 1118.03 kN compression

CE = 1440 kN tension

DE = 200 kN tension

EF = 1440 kN tension

DF = 1609.97 kN compression

**With Loads at B and D moved and added to loads at C and E, respectively**

RA and RF will not change, thus, internal forces of AB, AC, DF, and EF will not change.

By inspection at joint E, CE will not change because EF did not change but DE changed from 200 kN tension to 1000 kN tension.

By inspection at joint B, BD remains 491.94 kN compression from sum of horizontal forces but BC changed from sum of vertical forces.

$\Sigma F_V = 0$

$F_{BC} = \frac{2}{\sqrt{5}}(983.87) + \frac{1}{\sqrt{5}}F_{BD}$

$F_{BC} = \frac{2}{\sqrt{5}}(983.87) + \frac{1}{\sqrt{5}}(491.94)$

$F_{BC} = 1100 \, \text{kN}$ tension

**At joint C**

Since AC and CE did not change, the value of CD will not change in summing up forces in horizontal direction. To check,

$\Sigma F_V = 0$

$\frac{1}{\sqrt{5}}(1118.03) + 600 = 1100$

$1100 = 1100$ *Check!*

Thus, only BC and DE changed

- BC; from 700 kN tension to 1100 kN tension
- DE; from 200 kN tension to 1000 kN tension