$\Sigma M = 0$
$T = T_{br} + T_{st}$ → Equation (1)
$\theta_{br} = \theta_{st}$
$\left( \dfrac{TL}{JG} \right)_{br} = \left( \dfrac{TL}{JG} \right)_{st}$
$\dfrac{T_{br}(2)(1000)}{\frac{1}{32}\pi (75^4)(35\,000)} = \dfrac{T_{st}(1.5)(1000)}{\frac{1}{32}\pi (50^4)(83\,000)}$
$T_{br} = 1.6011T_{st}$ → Equation (2a)
$T_{st} = 0.6246T_{br}$ → Equation (2b)
$\tau_{max} = \dfrac{16T}{\pi D^3}$
Based on τbr ≤ 60 MPa
$60 = \dfrac{16T_{br}}{\pi (75^3)}$
$T_{br} = 4\,970\,097.75 \, \text{N}\cdot\text{mm}$
$T_{br} = 4.970 \, \text{ kN}\cdot\text{m}$ → Maximum allowable torque for bronze
From Equation (2b)
$T_{st} = 0.6246(4.970)$
$T_{st} = 3.104 \, \text{ kN}\cdot\text{m}$
Based on τbr ≤ 80 MPa
$80 = \dfrac{16T_{st}}{\pi (50^3)}$
$T_{st} = 1\,963\,495.41 \, \text{N}\cdot\text{mm}$
$T_{st} = 1.963 \, \text{ kN}\cdot\text{m}$ → Maximum allowable torque for steel
From Equation (2a)
$T_{br} = 1.6011(1.963)$
$T_{br} = 3.142 \, \text{ kN}\cdot\text{m}$
From Equation (1), use Tbr = 3.142 kN·m and Tst = 1.963 kN·m
$T = 3.142 + 1.963$
$T = 5.105 \, \text{kN}\cdot\text{m}$ answer