$\tau_{max} = \dfrac{16T}{\pi D^3}$
For bronze:
$8000 = \dfrac{16T_{br}}{\pi {D_{br}}^3}$
$T_{br} = 500\pi {D_{br}}^3 \, \text{lb}\cdot\text{in}$
For steel:
$12\,000 = \dfrac{16T_{st}}{\pi {D_{st}}^3}$
$T_{st} = 750\pi {D_{st}}^3 \, \text{lb}\cdot\text{in}$
$\Sigma M = 0$
$T_{br} + T_{st} = T$
$T_{br} + T_{st} = 12(1000)(12)$
$T_{br} + T_{st} = 144\,000 \, \text{lb}\cdot\text{in}$
$500\pi {D_{br}}^3 + 750\pi {D_{st}}^3 = 144\,000$
${D_{br}}^3 = 288 / \pi + 1.5 {D_{st}}^3$ → Equation (1)
$\theta_{br} = \theta_{st}$
$\left( \dfrac{TL}{JG} \right)_{br} = \left( \dfrac{TL}{JG} \right)_{st}$
$\dfrac{T_{br}(6)}{\frac{1}{32}\pi {D_{br}}^4 (6 \times 10^6)} = \dfrac{T_{st}(4)}{\frac{1}{32}\pi {D_{st}}^4 (12 \times 10^6)}$
$\dfrac{T_{br}}{{D_{br}}^4} = \dfrac{T_{st}}{3{D_{st}}^4}$
$\dfrac{500\pi {D_{br}}^3}{{D_{br}}^4} = \dfrac{750\pi {D_{st}}^3}{3{D_{st}}^4}$
$D_{st} = 0.5D_{br}$
From Equation (1)
${D_{br}}^3 = 288 / \pi - 1.5(0.5 D_{br})^3$
$D_{br} = 288 / \pi$
$D_{br} = 4.26 \, \text{in.}$ answer
$D_{st} = 0.5(4.26) = 2.13 \, \text{in.}$ answer