Evaluation of Integrals

If   F(s)=L{f(t)},   then   0estf(t)dt=F(s).
 

Taking the limit as   s0,   then   0f(t)dt=F(0)   assuming the integral to be convergent.
 

Problem 02 | Laplace Transform of Intergrals

Problem 02
Find the Laplace transform of   t0(u2u+eu)du.
 

Solution 02
L[t0f(u)du]=F(s)s
 

Hence,
L[t0(u2u+eu)du]=L(t2t+et)s

L[t0(u2u+eu)du]=1sL(t2t+et)

Problem 01 | Laplace Transform of Intergrals

Problem 01
Find the Laplace transform of   t0sinuudu   if L(sintt)=arctan(1s).
 

Solution 01
L[t0f(u)du]=F(s)s
 

Since,
L(sintt)=arctan(1s)

F(s)=arctan(1s)
 

Then,

Problem 04 | Laplace Transform of Derivatives

Problem 04
Find the Laplace transform of   f(t)=tsint   using the transform of derivatives.
 

Solution 04
f(t)=tsint       ..........       f(0)=0

f(t)=tcost+sint       ..........       f(0)=0

f
 

\mathcal{L} \left\{ f''(t) \right\} = s^2 \mathcal{L} \left\{ f(t) \right\} - s \, f(0) - f'(0)