Problem 02 | Laplace Transform of Intergrals

Problem 02
Find the Laplace transform of   $\displaystyle \int_0^t (u^2 - u + e^{u}) \, du$.
 

Solution 02
$\displaystyle \mathcal{L} \left[ \int_0^t f(u) \, du \right] = \dfrac{F(s)}{s}$
 

Hence,
$\displaystyle \mathcal{L} \left[ \int_0^t (u^2 - u + e^{u}) \, du \right] = \dfrac{\mathcal{L}(t^2 - t + e^t)}{s}$

$\displaystyle \mathcal{L} \left[ \int_0^t (u^2 - u + e^{u}) \, du \right] = \dfrac{1}{s} \mathcal{L}(t^2 - t + e^t)$

Problem 01 | Laplace Transform of Intergrals

Problem 01
Find the Laplace transform of   $\displaystyle \int_0^t \dfrac{\sin u}{u} \, du$   if $\mathcal{L} \left( \dfrac{\sin t}{t} \right) = \arctan \left( \dfrac{1}{s} \right)$.
 

Solution 01
$\displaystyle \mathcal{L} \left[ \int_0^t f(u) \, du \right] = \dfrac{F(s)}{s}$
 

Since,
$\mathcal{L} \left( \dfrac{\sin t}{t} \right) = \arctan \left( \dfrac{1}{s} \right)$

$F(s) = \arctan \left( \dfrac{1}{s} \right)$
 

Then,

Problem 04 | Laplace Transform of Derivatives

Problem 04
Find the Laplace transform of   $f(t) = t \, \sin t$   using the transform of derivatives.
 

Solution 04
$f(t) = t \, \sin t$       ..........       $f(0) = 0$

$f'(t) = t \, \cos t + \sin t$       ..........       $f'(0) = 0$

$f''(t) = (-t \, \sin t + \cos t) + \cos t = -t \, \sin t + 2\cos t$
 

$\mathcal{L} \left\{ f''(t) \right\} = s^2 \mathcal{L} \left\{ f(t) \right\} - s \, f(0) - f'(0)$