Problem 01 | Substitution Suggested by the Equation

Problem 01
(3x2y+1) dx+(3x2y+3) dy=0
 

Solution 01
(3x2y+1) dx+(3x2y+3) dy=0
 

Let
z=3x2y

dz=3 dx2 dy

dy=12(3 dxdz)
 

Thus,
(z+1) dx+(z+3)[12(3 dxdz)]=0

(z+1) dx+32(z+3) dx12(z+3) dz=0

[(z+1)+(32z+92)] dx12(z+3) dz=0

(52z+112) dx12(z+3) dz=0

Substitution Suggested by the Equation | Bernoulli's Equation

Substitution Suggested by the Equation
Example 1

(2xy+1) dx3(2xy) dy=0
 

The quantity (2x - y) appears twice in the equation. Let
z=2xy

dz=2 dxdy

dy=2 dxdz
 

Substitute,
(z+1) dx3z(2 dxdz)=0

then continue solving.

 

Problem 04 | Determination of Integrating Factor

Problem 04
y(4x+y) dx2(x2y) dy=0
 

Solution 04
M dx+N dy=0

y(4x+y) dx2(x2y) dy=0
 

M=y(4x+y)=4xy+y2

N=2(x2y)=2x2+2y
 

My=4x+2y

Nx=4x
 

MyNx=(4x+2y)(4x)

MyNx=8x+2y
 

Problem 03 | Determination of Integrating Factor

Problem 03
y(2xy+1) dx+x(3x4y+3) dy=0
 

Solution 03
M dx+N dy=0

y(2xy+1) dx+x(3x4y+3) dy=0
 

M=y(2xy+1)=2xyy2+y

N=x(3x4y+3)=3x24xy+3x
 

My=2x2y+1

Nx=6x4y+3
 

MyNx=(2x2y+1)(6x4y+3)

MyNx=4x+2y2

Problem 02 | Determination of Integrating Factor

Problem 02
2y(x2y+x) dx+(x22y) dy=0
 

Solution 02
M dx+N dy=0

2y(x2y+x) dx+(x22y) dy=0
 

M=2y(x2y+x)=2x2y2y2+2xy

N=x22y
 

My=2x24y+2x

Nx=2x
 

MyNx=(2x24y+2x)2x

MyNx=2x24y=2(x22y)
 

Problem 01 | Determination of Integrating Factor

Problem 01
(x2+y2+1) dx+x(x2y) dy=0
 

Solution 01
M dx+N dy=0

(x2+y2+1) dx+x(x2y) dy=0
 

M=x2+y2+1

N=x(x2y)=x22xy
 

My=2y

Nx=2x2y
 

MyNx=2y(2x2y)

MyNx=2x+4y

The Determination of Integrating Factor

From the differential equation
 

M dx+N dy=0

 

Rule 1
If   1N(MyNx)=f(x),   a function of x alone, then   u=ef(x) dx   is the integrating factor.

 

Rule 2
If   1M(MyNx)=f(y),   a function of y alone, then   u=ef(y) dy   is the integrating factor.

 

Problem 02 | Inverse Laplace Transform

Problem 02
Find the inverse transform of   5s24ss2+9.
 

Solution 02
L1[5s24ss2+9]=5L1(1s2)4L1(ss2+9)

L1[5s24ss2+9]=5e2tL1(1s)4L1(ss2+32)