The Inverse Laplace Transform
Definition
From $\mathcal{L} \left\{ f(t) \right\} = F(s)$, the value $f(t)$ is called the inverse Laplace transform of $F(s)$. In symbol,
where $\mathcal{L}^{-1}$ is called the inverse Laplace transform operator.
To find the inverse transform, express $F(s)$ into partial fractions which will, then, be recognizable as one of the following standard forms.
Table of Inverse Laplace Transform
1. $\mathcal{L}^{-1}\left\{ \dfrac{1}{s} \right\} = 1$
2. $\mathcal{L}^{-1}\left\{ \dfrac{1}{s - a} \right\} = e^{at}$
3. $\mathcal{L}^{-1}\left\{ \dfrac{1}{s^n} \right\} = \dfrac{t^{n - 1}}{(n - 1)!}; ~ ~ n = 1, ~ 2, ~ 3, ...$
4. $\mathcal{L}^{-1}\left\{ \dfrac{1}{(s - a)^n} \right\} = \dfrac{e^{at}t^{n - 1}}{(n - 1)!}$
5. $\mathcal{L}^{-1}\left\{ \dfrac{1}{s^2 + b^2} \right\} = \dfrac{1}{b}\sin bt$
6. $\mathcal{L}^{-1}\left\{ \dfrac{s}{s^2 + b^2} \right\} = \cos bt$
7. $\mathcal{L}^{-1}\left\{ \dfrac{1}{s^2 - a^2} \right\} = \dfrac{1}{a}\sinh at$
8. $\mathcal{L}^{-1}\left\{ \dfrac{s}{s^2 - a^2} \right\} = \cosh at$
9. $\mathcal{L}^{-1}\left\{ \dfrac{1}{(s - a)^2 + b^2} \right\} = \dfrac{1}{b}e^{at}\sin bt$
10. $\mathcal{L}^{-1}\left\{ \dfrac{s - a}{(s - a)^2 + b^2} \right\} = e^{at}\cos bt$
11. $\mathcal{L}^{-1}\left\{ \dfrac{s}{(s^2 + b^2)^2} \right\} = \dfrac{1}{2b}t \sin bt$
12. $\mathcal{L}^{-1}\left\{ \dfrac{1}{(s^2 + b^2)^2} \right\} = \dfrac{1}{2b^3}(\sin bt - bt\cos bt)$
Theorems on Inverse Laplace Transformation
Theorem 1
If $a$ and $b$ are constants,
$\mathcal{L}^{-1}\left\{ a~f(s) + b~g(s) \right\} = a\mathcal{L}^{-1}\left\{ f(s) \right\} + b\mathcal{L}^{-1}\left\{ g(s) \right\}$
Theorem 2
$\mathcal{L}^{-1}\left\{ f(s) \right\} = e^{-at} \mathcal{L}^{-1}\left\{ f(s - a) \right\}$