The Inverse Laplace Transform
Definition
From L{f(t)}=F(s), the value f(t) is called the inverse Laplace transform of F(s). In symbol,
where L−1 is called the inverse Laplace transform operator.
To find the inverse transform, express F(s) into partial fractions which will, then, be recognizable as one of the following standard forms.
Table of Inverse Laplace Transform
1. L−1{1s}=1
2. L−1{1s−a}=eat
3. L−1{1sn}=tn−1(n−1)!; n=1, 2, 3,...
4. L−1{1(s−a)n}=eattn−1(n−1)!
5. L−1{1s2+b2}=1bsinbt
6. L−1{ss2+b2}=cosbt
7. L−1{1s2−a2}=1asinhat
8. L−1{ss2−a2}=coshat
9. L−1{1(s−a)2+b2}=1beatsinbt
10. L−1{s−a(s−a)2+b2}=eatcosbt
11. L−1{s(s2+b2)2}=12btsinbt
12. L−1{1(s2+b2)2}=12b3(sinbt−btcosbt)
Theorems on Inverse Laplace Transformation
Theorem 1
If a and b are constants,
L−1{a f(s)+b g(s)}=aL−1{f(s)}+bL−1{g(s)}
Theorem 2
L−1{f(s)}=e−atL−1{f(s−a)}