The Inverse Laplace Transform

Definition
From   L{f(t)}=F(s),   the value   f(t)   is called the inverse Laplace transform of   F(s). In symbol,
 

L1{F(s)}=f(t)

where   L1   is called the inverse Laplace transform operator.
 

To find the inverse transform, express   F(s)   into partial fractions which will, then, be recognizable as one of the following standard forms.
 

Table of Inverse Laplace Transform
1. L1{1s}=1

2. L1{1sa}=eat

3. L1{1sn}=tn1(n1)!;  n=1, 2, 3,...

4. L1{1(sa)n}=eattn1(n1)!

5. L1{1s2+b2}=1bsinbt

6. L1{ss2+b2}=cosbt

7. L1{1s2a2}=1asinhat

8. L1{ss2a2}=coshat

9. L1{1(sa)2+b2}=1beatsinbt

10. L1{sa(sa)2+b2}=eatcosbt

11. L1{s(s2+b2)2}=12btsinbt

12. L1{1(s2+b2)2}=12b3(sinbtbtcosbt)
 

Theorems on Inverse Laplace Transformation
Theorem 1
If   a   and   b   are constants,
L1{a f(s)+b g(s)}=aL1{f(s)}+bL1{g(s)}
 

Theorem 2
L1{f(s)}=eatL1{f(sa)}