Laplace Transform of Intergrals
Theorem
If $\mathcal{L} \left\{ f(t) \right\} = F(s)$, then
Proof
Let $\displaystyle g(t) = \int_0^t f(u) \, du$
then, $g'(t) = f(t)$ and $g(0) = 0$
Taking the Laplace transform of both sides,
$\mathcal{L} \left\{ g'(t) \right\} = \mathcal{L} \left\{ f(t) \right\}$
From Laplace transform of derivative, $\mathcal{L} \left\{ g'(t) \right\} = s \, \mathcal{L} \left\{ g(t) \right\} - g(0)$ and from the Theorem above, $\mathcal{L} \left\{ f(t) \right\} = F(s)$
Thus,
$s \, \mathcal{L} \left\{ g(t) \right\} - g(0) = F(s)$
$s \, \mathcal{L} \left\{ g(t) \right\} - 0 = F(s)$
$s \, \mathcal{L} \left\{ g(t) \right\} = F(s)$
$\mathcal{L} \left\{ g(t) \right\} = \dfrac{F(s)}{s}$
$\displaystyle \mathcal{L} \left[ \int_0^t f(u) \, du \right] = \dfrac{F(s)}{s}$