Change of Scale Property | Laplace Transform
Change of Scale Property
If $\mathcal{L} \left\{ f(t) \right\} = F(s)$, then,
$\mathcal{L} \left\{ f(at) \right\} = \dfrac{1}{a} F \left( \dfrac{s}{a} \right)$
Proof of Change of Scale Property
$\displaystyle \mathcal{L} \left\{ f(at) \right\} = \int_0^\infty e^{-st} f(at) \, dt$
Let
$z = at$
$t = z/a$
$dt = \dfrac{dz}{a}$
when $t = 0, \, z = 0$
when $t = \infty, \, z = \infty$
$\displaystyle \mathcal{L} \left\{ f(at) \right\} = \int_0^\infty e^{-s(z/a)} f(z) \, \dfrac{dz}{a}$
$\displaystyle \mathcal{L} \left\{ f(at) \right\} = \dfrac{1}{a}\int_0^\infty e^{-(s/a)z} f(z) \, dz$
Hence,
$\mathcal{L} \left\{ f(at) \right\} = \dfrac{1}{a} F\left( \dfrac{s}{a} \right)$ okay