$g(t) = \begin{cases} f(t - 2)^3 & t \gt 2 \\ 0 & t \lt 2 \end{cases}$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = \int_0^\infty e^{-st} g(t) \, dt$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = \int_0^2 e^{-st} (0) \, dt + \int_2^\infty e^{-st} (t - 2)^3 \, dt$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = \int_2^\infty e^{-st} (t - 2)^3 \, dt$
$z = t - 2$
$t = z + 2$
$dt = dz$
when $t = 2, \, z = 0$
when $t = \infty, \, z = \infty$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = \int_0^\infty e^{-s(z + 2)} z^3 \, dz$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = \int_0^\infty e^{-sz - 2s} z^3 \, dz$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = \int_0^\infty e^{-sz} e^{-2s} z^3 \, dz$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = e^{-2s} \int_0^\infty e^{-sz} z^3 \, dz$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = e^{-2s} \mathcal{L} (z^3)$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = e^{-2s} \left( \dfrac{3!}{s^{3 + 1}} \right)$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = e^{-2s} \left( \dfrac{6}{s^4} \right)$
$\displaystyle \mathcal{L} \left\{ g(t) \right\} = \dfrac{6e^{-2s}}{s^4}$ okay