First Shifting Property | Laplace Transform
First Shifting Property
If $\mathcal{L} \left\{ f(t) \right\} = F(s)$, when $s > a$ then,
$\mathcal{L} \left\{ e^{at} \, f(t) \right\} = F(s - a)$
In words, the substitution $s - a$ for $s$ in the transform corresponds to the multiplication of the original function by $e^{at}$.
Proof of First Shifting Property
$\displaystyle F(s) = \int_0^\infty e^{-st} f(t) \, dt$
$\displaystyle F(s - a) = \int_0^\infty e^{-(s - a)t} f(t) \, dt$
$\displaystyle F(s - a) = \int_0^\infty e^{-st + at} f(t) \, dt$
$\displaystyle F(s - a) = \int_0^\infty e^{-st} e^{at} f(t) \, dt$
$F(s - a) = \mathcal{L} \left\{ e^{at} f(t) \right\}$ okay