Solution to Problem 225 Biaxial Deformation

Problem 225
A welded steel cylindrical drum made of a 10-mm plate has an internal diameter of 1.20 m. Compute the change in diameter that would be caused by an internal pressure of 1.5 MPa. Assume that Poisson's ratio is 0.30 and E = 200 GPa.

Solution to Problem 224 Triaxial Deformation

Problem 224
For the block loaded triaxially as described in Prob. 223, find the uniformly distributed load that must be added in the x direction to produce no deformation in the z direction.

Solution to Problem 222 Poisson's Ratio

Problem 222
A solid cylinder of diameter d carries an axial load P. Show that its change in diameter is 4Pν / πEd.

Solution to Problem 219 Axial Deformation

Problem 219
A round bar of length L, which tapers uniformly from a diameter D at one end to a smaller diameter d at the other, is suspended vertically from the large end. If w is the weight per unit volume, find the elongation of ω the rod caused by its own weight. Use this result to determine the elongation of a cone suspended from its base.

Solution to Problem 218 Axial Deformation

Problem 218
A uniform slender rod of length L and cross sectional area A is rotating in a horizontal plane about a vertical axis through one end. If the unit mass of the rod is ρ, and it is rotating at a constant angular velocity of ω rad/sec, show that the total elongation of the rod is ρω2 L3/3E.

Solution to Problem 217 Axial Deformation

Problem 217
Solve Prob. 216 if rod AB is of steel, with E = 29 × 106 psi. Assume α = 45° and θ = 30°; all other data remain unchanged.

Solution to Problem 216 Axial Deformation

Problem 216
As shown in Fig. P-216, two aluminum rods AB and BC, hinged to rigid supports, are pinned together at B to carry a vertical load P = 6000 lb. If each rod has a cross-sectional area of 0.60 in.2 and E = 10 × 106 psi, compute the elongation of each rod and the horizontal and vertical displacements of point B. Assume α = 30° and θ = 30°.

Figure P-216 and P-217


Solution to Problem 215 Axial Deformation

Problem 215
A uniform concrete slab of total weight W is to be attached, as shown in Fig. P-215, to two rods whose lower ends are on the same level. Determine the ratio of the areas of the rods so that the slab will remain level.

Figure P-215


Solution 215

Solution to Problem 214 Axial Deformation

Problem 214
The rigid bars AB and CD shown in Fig. P-214 are supported by pins at A and C and the two rods. Determine the maximum force P that can be applied as shown if its vertical movement is limited to 5 mm. Neglect the weights of all members.

Figure P-214



Subscribe to MATHalino RSS