Solution to Problem 265 Thermal Stress

Problem 265
A bronze bar 3 m long with a cross sectional area of 320 mm2 is placed between two rigid walls as shown in Fig. P-265. At a temperature of -20°C, the gap Δ = 2.5 mm. Find the temperature at which the compressive stress in the bar will be 35 MPa. Use α = 18.0 × 10-6 m/(m·°C) and E = 80 GPa.
 

Figure P-265

 

Solution to Problem 264 Thermal Stress

Problem 264
A steel rod 3 feet long with a cross-sectional area of 0.25 in.2 is stretched between two fixed points. The tensile force is 1200 lb at 40°F. Using E = 29 × 106 psi and α = 6.5 × 10-6 in./(in.·°F), calculate (a) the temperature at which the stress in the bar will be 10 ksi; and (b) the temperature at which the stress will be zero.
 

Solution to Problem 263 Thermal Stress

Problem 263
Steel railroad reels 10 m long are laid with a clearance of 3 mm at a temperature of 15°C. At what temperature will the rails just touch? What stress would be induced in the rails at that temperature if there were no initial clearance? Assume α = 11.7 µm/(m·°C) and E = 200 GPa.
 

Solution to Problem 262 Thermal Stress

Problem 262
A steel rod is stretched between two rigid walls and carries a tensile load of 5000 N at 20°C. If the allowable stress is not to exceed 130 MPa at -20°C, what is the minimum diameter of the rod? Assume α = 11.7 µm/(m·°C) and E = 200 GPa.
 

Solution to Problem 261 Thermal Stress

Problem 261
A steel rod with a cross-sectional area of 0.25 in2 is stretched between two fixed points. The tensile load at 70°F is 1200 lb. What will be the stress at 0°F? At what temperature will the stress be zero? Assume α = 6.5 × 10-6 in/(in·°F) and E = 29 × 106 psi.
 

Relationship Between Arithmetic Mean, Harmonic Mean, and Geometric Mean of Two Numbers

For two numbers x and y, let x, a, y be a sequence of three numbers. If x, a, y is an arithmetic progression then 'a' is called arithmetic mean. If x, a, y is a geometric progression then 'a' is called geometric mean. If x, a, y form a harmonic progression then 'a' is called harmonic mean.
 

Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship between the three is given by the formula
 

$AM \times HM = GM^2$

 

Below is the derivation of this relationship.
 

Thermal Stress

Temperature changes cause the body to expand or contract. The amount δT, is given by
 

$\delta_T = \alpha L \, (T_f \, - \, T_i) = \alpha L \, \Delta T$

where α is the coefficient of thermal expansion in m/m°C, L is the length in meter, Ti and Tf are the initial and final temperatures, respectively in °C. For steel, α = 11.25 × 10-6 m/m°C.
 

If temperature deformation is permitted to occur freely, no load or stress will be induced in the structure. In some cases where temperature deformation is not permitted, an internal stress is created. The internal stress created is termed as thermal stress.
 

Solution to Problem 257 Statically Indeterminate

Problem 257
Three bars AB, AC, and AD are pinned together as shown in Fig. P-257. Initially, the assembly is stress free. Horizontal movement of the joint at A is prevented by a short horizontal strut AE. Calculate the stress in each bar and the force in the strut AE when the assembly is used to support the load W = 10 kips. For each steel bar, A = 0.3 in.2 and E = 29 × 106 psi. For the aluminum bar, A = 0.6 in.2 and E = 10 × 106 psi.
 

Figure 257

 

Solution to Problem 256 Statically Indeterminate

Problem 256
Three rods, each of area 250 mm2, jointly support a 7.5 kN load, as shown in Fig. P-256. Assuming that there was no slack or stress in the rods before the load was applied, find the stress in each rod. Use Est = 200 GPa and Ebr = 83 GPa.
 

Figure P-256

 

Derivation of Sum of Finite and Infinite Geometric Progression

Geometric Progression, GP
Geometric progression (also known as geometric sequence) is a sequence of numbers where the ratio of any two adjacent terms is constant. The constant ratio is called the common ratio, r of geometric progression. Each term therefore in geometric progression is found by multiplying the previous one by r.
 

Eaxamples of GP:

  • 3, 6, 12, 24, … is a geometric progression with r = 2
  • 10, -5, 2.5, -1.25, … is a geometric progression with r = -1/2

 

Pages

 
 
Subscribe to MATHalino RSS