Common Quadrilaterals
Square
Area, $A = a^2$
Perimeter, $P = 4a$
Diagonal, $d = a\sqrt{2}$
Rectangle
Area, $A = ab$
Perimeter, $P = 2(a + b)$
Diagonal, $d = \sqrt{a^2 + b^2}$
Rhombus
Area, $A = a^2 \sin \theta = ah$
Perimeter, $P = 4a$
Shorter diagonal, $d_1 = a\sqrt{2 - 2 \cos \theta}$
longer diagonal, $d_2 = a\sqrt{2 + 2 \cos \theta}$
Note: The diagonals of square and rhombus are perpendicular to each other.
Parallelogram
Area, $A = ab \sin \theta = ah$
Perimeter, $P = 2(a + b)$
Shorter diagonal, $d_1 = \sqrt{a^2 + b^2 - 2ab \cos \theta}$
Longer diagonal, $d_2 = \sqrt{a^2 + b^2 + 2ab \cos \theta}$
Trapezoid
Area, $A = \frac{1}{2}(a + b)h$