based on the
relationship between central and inscribed angles, the figure below show the relationship between angle
ADB (
θ) and angle
AOB (2
θ) and the obtuse angle
BCD (
α) and reflex angle
BOD (2
α).
From the figure:
$2\alpha = 2\theta + 180^\circ$
$\alpha = \theta + 90^\circ$
From triangle BCD (Using Cosine Law):
$x^2 = 10^2 + 12^2 - 2(10)(12)\cos \alpha$
$x^2 = 244 - 240\cos \alpha$
$x^2 = 244 - 240\cos (\theta + 90^\circ)$
$x^2 = 244 - 240(\cos \theta \cos 90^\circ - \sin \theta \sin 90^\circ)$
$x^2 = 244 + 240\sin \theta$ → Equation (1)
From right triangle ABD:
$x^2 + 8^2 = (2r)^2$
$x^2 = 4r^2 - 64$
$\sin \theta = \dfrac{8}{2r}$
$\sin \theta = \dfrac{4}{r}$
From Equation (1)
$4r^2 - 64 = 244 + 240\left( \dfrac{4}{r} \right)$
$4r^2 - 308 - \dfrac{960}{r} = 0$
$r^3 - 77r - 240 = 0$ → Equation (2)
$r = 10.0446, \,\, -3.8691, \,\, -6.1755$
Use r = 10.0446 cm answer