Problem 01 | Laplace Transform by Integration

Problem 01
Find the Laplace transform of   f(t)=1   when   t>0.
 

Solution 01
L{f(t)}=0estf(t)dt

L(1)=0est(1)dt

L(1)=0estdt

L(1)=1s0est(sdt)

L(1)=1s[est]0

Laplace Transform

Definition of Laplace Transform

Let   f(t)   be a given function which is defined for   t0. If there exists a function   F(s)  so that
 

F(s)=0estf(t)dt,

 

then   F(s)   is called the Laplace Transform of   f(t), and will be denoted by   L{f(t)}.   Notice the integrator   estdt   where   s   is a parameter which may be real or complex.
 

Problem 04 | Exact Equations

Problem 04
(y22xy+6x)dx(x22xy+2)dy=0
 

Solution 04
(y22xy+6x)dx(x22xy+2)dy=0

M=y22xy+6x

N=x2+2xy2
 

Test for exactness
My=2y2x

Nx=2x+2y

Exact!
 

Let
Fx=M

Fx=y22xy+6x

F=(y22xy+6x)x
 

Integrate partially in x, holding y as constant

Problem 03 | Exact Equations

Problem 03
(2xy3x2)dx+(x2+y)dy=0
 

Solution 03
(2xy3x2)dx+(x2+y)dy=0
 

M=2xy3x2

N=x2+y
 

Test for exactness
My=2x

Nx=2x

Exact!
 

Let
Fx=M

Fx=2xy3x2

F=(2xy3x2)x
 

Integrate partially in x, holding y as constant