Problem 01 | Laplace Transform by Integration

Problem 01
Find the Laplace transform of   $f(t) = 1$   when   $t > 0$.
 

Solution 01
$\displaystyle \mathcal{L} \left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) \, dt$

$\displaystyle \mathcal{L} (1) = \int_0^\infty e^{-st} (1) \, dt$

$\displaystyle \mathcal{L} (1) = \int_0^\infty e^{-st} \, dt$

$\displaystyle \mathcal{L} (1) = -\dfrac{1}{s} \int_0^\infty e^{-st} \, (-s \, dt)$

$\displaystyle \mathcal{L} (1) = -\dfrac{1}{s} \left[ e^{-st} \right]_0^\infty$

Laplace Transform

Definition of Laplace Transform

Let   $f(t)$   be a given function which is defined for   $t \ge 0$. If there exists a function   $F(s)$  so that
 

$\displaystyle F(s) = \int_0^\infty e^{-st} \, f(t) \, dt$,

 

then   $F(s)$   is called the Laplace Transform of   $f(t)$, and will be denoted by   $\mathcal{L} \left\{f(t)\right\}$.   Notice the integrator   $e^{-st} \, dt$   where   $s$   is a parameter which may be real or complex.
 

Problem 04 | Exact Equations

Problem 04
$(y^2 - 2xy + 6x) \, dx - (x^2 - 2xy + 2) \, dy = 0$
 

Solution 04
$(y^2 - 2xy + 6x) \, dx - (x^2 - 2xy + 2) \, dy = 0$

$M = y^2 - 2xy + 6x$

$N = -x^2 + 2xy - 2$
 

Test for exactness
$\dfrac{\partial M}{\partial y} = 2y - 2x$

$\dfrac{\partial N}{\partial x} = -2x + 2y$

Exact!
 

Let
$\dfrac{\partial F}{\partial x} = M$

$\dfrac{\partial F}{\partial x} = y^2 - 2xy + 6x$

$\partial F = (y^2 - 2xy + 6x) \, \partial x$
 

Integrate partially in x, holding y as constant

Problem 03 | Exact Equations

Problem 03
$(2xy - 3x^2) \, dx + (x^2 + y) \, dy = 0$
 

Solution 03
$(2xy - 3x^2) \, dx + (x^2 + y) \, dy = 0$
 

$M = 2xy - 3x^2$

$N = x^2 + y$
 

Test for exactness
$\dfrac{\partial M}{\partial y} = 2x$

$\dfrac{\partial N}{\partial x} = 2x$

Exact!
 

Let
$\dfrac{\partial F}{\partial x} = M$

$\dfrac{\partial F}{\partial x} = 2xy - 3x^2$

$\partial F = (2xy - 3x^2) \, \partial x$
 

Integrate partially in x, holding y as constant