This problem can be done with less effort by area-moment method.
$EI \, t_{A/B} = (Area_{AB}) \, \bar{X}_A$
$EI \, t_{A/B} = -\frac{1}{3}(2)(800)(\frac{3}{2})$
$EI \, t_{A/B} = -800 \, \text{ N}\cdot\text{m}^3$
$EI \, t_{D/B} = (Area_{AB}) \, \bar{X}_A$
$EI \, t_{D/B} = -\frac{1}{3}(2)(800)(\frac{7}{2})$
$EI \, t_{D/B} = -\frac{5600}{3} \, \text{ N}\cdot\text{m}^3$
The negative sign above indicates that the elastic curve is below the tangent line.
$\dfrac{y_A}{2} = \dfrac{t_{D/B}}{4}$
$y_A = \frac{1}{2}t_{D/B}$
$EI \, y_A = \frac{1}{2}(EI \, t_{D/B})$
$EI \, y_A = \frac{1}{2}(\frac{5600}{3})$
$EI \, y_A = \frac{2800}{3} \, \text{ N}\cdot\text{m}^3$
$EI \, \delta = EI \, y_A + EI \, t_{A/B}$
$EI \, \delta = \frac{2800}{3} + 800$
$EI \, \delta = \frac{5200}{3} \, \text{ N}\cdot\text{m}^3$
$EI \, \delta = \dfrac{5200}{3} \, \text{ N}\cdot\text{m}^3$ (okay!)