$r^2 + 6^2 = 9^2$
$r^2 = 45$
$\theta = \dfrac{360^\circ}{n}$
Base area of pyramid
$A_b = n \times \frac{1}{2}r^2 \sin \theta$
$A_b = n \times \frac{1}{2}(45) \sin \left( \dfrac{360^\circ}{n} \right)$
$A_b = 22.5n \sin \left( \dfrac{360^\circ}{n} \right)$
Volume of pyramid
$V = \frac{1}{3}A_bh$
$V = \dfrac{1}{3} \times \left[ 22.5n \sin \left( \dfrac{360^\circ}{n} \right) \right] \times 15$
$V = 112.5n \sin \left( \dfrac{360^\circ}{n} \right)$
Part (a) Square pyramid: n = 4
$V = 112.5(4) \sin \left( \dfrac{360^\circ}{4} \right)$
$V = 450 ~ \text{in.}^3$ answer
Part (b) Pentagonal pyramid: n = 5
$V = 112.5(5) \sin \left( \dfrac{360^\circ}{5} \right)$
$V = 534.97 ~ \text{in.}^3$ answer
Part (c) Hexagonal pyramid: n = 6
$V = 112.5(6) \sin \left( \dfrac{360^\circ}{6} \right)$
$V = 584.57 ~ \text{in.}^3$ answer
Part (d) Octagonal pyramid: n = 8
$V = 112.5(8) \sin \left( \dfrac{360^\circ}{8} \right)$
$V = 636.40 ~ \text{in.}^3$ answer