Based on circumferential stress (tangential):
$\Sigma F_V = 0$
$F = 2T$
$p(DL) = 2(\sigma_t \, L_t)$
$\sigma_t = \dfrac{pD}{2t}$
$60 = \dfrac{p(450)}{2(20)}$
$p = 5.33 \, \text{MPa}$
Based on longitudinal stress:
$\Sigma F_H = 0$
$F = P$
$p (\frac{1}{4} \pi D^2) = \sigma_l(\pi D)$
$\sigma_l = \dfrac{pD}{4t}$
$140 = \dfrac{p(450)}{4(20)}$
$p = 24.89 \, \text{MPa}$
Use $p = 5.33 \, \text{MPa}$ answer