# tangential stress

## Stresses on Thin-walled Pressure Tanks

The circumferential stress, also known as tangential stress, in a tank or pipe can be determined by applying the concept of fluid pressure against curved surfaces. The wall of a tank or pipe carrying fluid under pressure is subjected to tensile forces across its longitudinal and transverse sections.

- Read more about Stresses on Thin-walled Pressure Tanks
- Log in or register to post comments
- 15057 reads

## Solution to Problem 249 Statically Indeterminate

**Problem 249**

There is a radial clearance of 0.05 mm when a steel tube is placed over an aluminum tube. The inside diameter of the aluminum tube is 120 mm, and the wall thickness of each tube is 2.5 mm. Compute the contact pressure and tangential stress in each tube when the aluminum tube is subjected to an internal pressure of 5.0 MPa.

- Read more about Solution to Problem 249 Statically Indeterminate
- Log in or register to post comments
- 14326 reads

## Solution to Problem 226 Biaxial Deformation

**Problem 226**

A 2-in.-diameter steel tube with a wall thickness of 0.05 inch just fits in a rigid hole. Find the tangential stress if an axial compressive load of 3140 lb is applied. Assume ν = 0.30 and neglect the possibility of buckling.

- Read more about Solution to Problem 226 Biaxial Deformation
- 2 comments
- Log in or register to post comments
- 18211 reads

## Solution to Problem 142 Pressure Vessel

- Read more about Solution to Problem 142 Pressure Vessel
- Log in or register to post comments
- 42933 reads

## Solution to Problem 141 Pressure Vessel

**Problem 141**

The tank shown in Fig. P-141 is fabricated from 1/8-in steel plate. Calculate the maximum longitudinal and circumferential stress caused by an internal pressure of 125 psi.

- Read more about Solution to Problem 141 Pressure Vessel
- Log in or register to post comments
- 44577 reads

## Solution to Problem 138 Pressure Vessel

**Problem 138**

The strength of longitudinal joint in Fig. 1-17 is 33 kips/ft, whereas for the girth is 16 kips/ft. Calculate the maximum diameter of the cylinder tank if the internal pressure is 150 psi.

- Read more about Solution to Problem 138 Pressure Vessel
- Log in or register to post comments
- 46491 reads

## Solution to Problem 137 Pressure Vessel

**Problem 137**

A water tank, 22 ft in diameter, is made from steel plates that are 1/2 in. thick. Find the maximum height to which the tank may be filled if the circumferential stress is limited to 6000 psi. The specific weight of water is 62.4 lb/ft^{3}.

- Read more about Solution to Problem 137 Pressure Vessel
- Log in or register to post comments
- 53531 reads

## Solution to Problem 136 Pressure Vessel

**Problem 136**

A cylindrical pressure vessel is fabricated from steel plating that has a thickness of 20 mm. The diameter of the pressure vessel is 450 mm and its length is 2.0 m. Determine the maximum internal pressure that can be applied if the longitudinal stress is limited to 140 MPa, and the circumferential stress is limited to 60 MPa.

**Solution 136**

Based on circumferential stress (tangential):

- Read more about Solution to Problem 136 Pressure Vessel
- Log in or register to post comments
- 66060 reads

## Solution to Problem 135 Pressure Vessel

**Problem 135**

Calculate the minimum wall thickness for a cylindrical vessel that is to carry a gas at a pressure of 1400 psi. The diameter of the vessel is 2 ft, and the stress is limited to 12 ksi.

- Read more about Solution to Problem 135 Pressure Vessel
- Log in or register to post comments
- 52954 reads