From the FBD of the whole system
ΣMC=0
2AH+8AV=6(24)+2(72)
2AH+8AV=288
AH+4AV=144 ← Equation (1)
ΣMA=0
2CH+2(24)+6(72)=8CV
2CH+480=8CV
2CH−8CV=−480
CH−4CV=−240 ← Equation (2)
From the FBD of the section to the left of B
ΣMB=0
4AH+2(24)=4AV
4AH−4AV=−48
AH−AV=−12 ← Equation (3)
ΣMA=0
4BH=4BV+2(24)
4BH−4BV=48
BH−BV=12 ← Equation (4)
From the FBD of the section to the right of B
ΣMB=0
6CH+2(72)=4CV
6CH−4CV=−144
3CH−2CV=−72 ← Equation (5)

ΣMC=0
6BH+4BV=2(72)
6BH+4BV=144
3BH+2BV=72 ← Equation (6)
From Equation (1) and Equation (3)
AH=19.2 kN
AV=31.2 kN
From Equation (2) and Equation (5)
CH=19.2 kN
CV=64.8 kN
From Equation (4) and Equation (6)
BH=19.2 kN
BV=7.2 kN
Checking for Reactions:
ΣFH=0
19.2−19.2=0 (okay!)
ΣFV=0
31.2+64.8−24−72=0 (okay!)
From the FBD of the Section to the Left of M-M
ΣMA=0
4FBD=2(24)
FBD=12 kN compression
ΣFV=0
FBEsin45∘+24=31.2
FBE=7.2√2 kN
FBE=10.182 kN compression
Checking:
From the FBD of the Section to the Right of N-N
ΣMC=0
6F1=2(72)
F1=24 kN
ΣFV=0
3√13F2+64.8=72
F2=2.4√13 kN
F2=8.653 kN tension
From the FBD of Joint B
ΣFV=0
FBEsin45∘=3√13F2
7.2√2sin45∘=3√13(2.4√13)
7.2=7.2 (okay!)
ΣFH=0
FBD+FBEcos45∘+2√13F2=F1
12+7.2√2cos45∘+2√13(2.4√13)=24
24=24 (okay!)
Answer Summary
BH=19.2 kN
BV=7.2 kN
FBD=12 kN compression
FBE=10.182 kN compression