y=kxn
At (b, h)
h=kbn
k=hbn
Thus,
y=hbnxn
Differential area
dA=ydx
dA=hbnxndx
Area by integration
A=hbn∫b0xndx
A=hbn[xn+1n+1]b0
A=h(n+1)bn[(bn+1)−(0n+1)]
A=1(n+1)bh answer
x-coordinate of the centroid
AxG=∫baxcdA
1(n+1)bhxG=∫b0x(hbnxndx)
1(n+1)bhxG=hbn∫b0xn+1dx
1(n+1)bhxG=hbn[xn+2n+2]b0
1(n+1)bhxG=h(n+2)bn[(bn+2)−(0n+2)]
1(n+1)bhxG=h(n+2)bn[bn+2]
1(n+1)bhxG=1n+2b2h
xG=n+1n+2b
Location of centroid from the line x = b
ˉx=b−xG
ˉx=b−n+1n+2b
ˉx=(n+2)−(n+1)n+2b
ˉx=1n+2b answer
y-coordinate of the centroid
Aˉy=∫baycdA
1(n+1)bhˉy=∫b0(12y)(ydx)
1(n+1)bhˉy=12∫b0y2dx
1(n+1)bhˉy=12∫b0(hbnxn)2dx
1(n+1)bhˉy=h22b2n∫b0x2ndx
1(n+1)bhˉy=h22b2n[x2n+12n+1]b0
1(n+1)bhˉy=h22(2n+1)b2n[(b2n+1)−(02n+1)]
1(n+1)bhˉy=h22(2n+1)b2n[b2n+1]
1(n+1)bhˉy=12(2n+1)bh2
ˉy=n+12(2n+1)h
ˉy=n+14n+2h answer