Skip to main content
HomeMATHalinoEngineering Math Review

Search form

Login • Register

  • Home
    • Recent
    • Glossary
    • About
  • Algebra
    • Derivation of Formulas
    • Engineering Economy
    • General Engineering
  • Trigo
    • Spherical Trigonometry
  • Geometry
    • Solid Geometry
    • Analytic Geometry
  • Calculus
    • Integral Calculus
    • Differential Equations
    • Advance Engineering Mathematics
  • Mechanics
    • Strength of Materials
    • Structural Analysis
  • CE
    • CE Board: Math
    • CE Board: Hydro Geo
    • CE Board: Design
    • Surveying
    • Hydraulics
    • Timber Design
    • Reinforced Concrete
    • Geotechnical Engineering
  • Courses
    • Exams
    • Old MCQ
  • Forums
    • Basic Engineering Math
    • Calculus
    • Mechanics
    • General Discussions
  • Blogs

Breadcrumbs

You are here:

  1. Home
  2. spandrel

spandrel

708 Centroid and area of spandrel by integration

Problem 708
Compute the area of the spandrel in Fig. P-708 bounded by the x-axis, the line x = b, and the curve y = kxn where n ≥ 0. What is the location of its centroid from the line x = b? Determine also the y coordinate of the centroid.
 

Centroid and area of spandrel under the curve y = kx^n

 

  • Read more about 708 Centroid and area of spandrel by integration
  • Log in or register to post comments

Example 4 | Plane Areas in Rectangular Coordinates

Example 4
Solve the area bounded by the curve y = 4x - x2 and the lines x = -2 and y = 4.
 

  • Read more about Example 4 | Plane Areas in Rectangular Coordinates
  • Log in or register to post comments

Example 2 | Plane Areas in Rectangular Coordinates

Example 2
Find the area bounded by the curve a2 y = x3, the x-axis and the line x = 2a.
 

  • Read more about Example 2 | Plane Areas in Rectangular Coordinates
  • Log in or register to post comments

Moment Diagram by Parts

The moment-area method of finding the deflection of a beam will demand the accurate computation of the area of a moment diagram, as well as the moment of such area about any axis. To pave its way, this section will deal on how to draw moment diagram by parts and to calculate the moment of such diagrams about a specified axis.
 

  • Read more about Moment Diagram by Parts
  • 2 comments
  • Log in or register to post comments
Home • Forums • Blogs • Glossary • Recent
About • Contact us • Terms of Use • Privacy Policy • Hosted by Linode • Powered by Drupal
MATHalino - Engineering Mathematics • Copyright 2025 Jhun Vert • All rights reserved