Equation of ellipse in y as a function of x
x2a2+y2b2=1
b2x2+a2y2=a2b2
a2y2=a2b2−b2x2
a2y2=b2(a2−x2)
y2=b2a2(a2−x2)
y=ba√a2−x2
Differential area
dA=ydx
dA=ba√a2−x2dx
Area of quarter ellipse
A=14πab
x-coordinate of the centroid
Aˉx=∫baxcdA
14πabˉx=∫a0x(ba√a2−x2dx)
14πabˉx=ba∫a0x√a2−x2dx
14πabˉx=−b2a∫a0(a2−x2)1/2(−2xdx)
14πabˉx=−b2a[(a2−x2)3/23/2]a0
14πabˉx=−b3a[(a2−a2)3/2−(a2−02)3/2]
14πabˉx=−b3a[−a3]
14πabˉx=13a2b
ˉx=4a3π answer
y-coordinate of the centroid
Aˉy=∫baycdA
14πabˉy=∫a0(12y)(ydx)
14πabˉy=12∫a0y2dx
14πabˉy=12∫a0b2a2(a2−x2)dx
14πabˉy=b22a2∫a0(a2−x2)dx
14πabˉy=b22a2[a2x−13x3]a0
14πabˉy=b22a2[(a3−13a3)−(03−13⋅03)]
14πabˉy=b22a2[23a3]
14πabˉy=13ab2
ˉy=4b3π answer