Apply three-moment equation to first and middle spans
M1L1+2M2(L1+L2)+M3L2+6A1ˉa1L1+6A2ˉb2L2=0
Where,
M1=0
L1=L2=12 ft
6A1ˉa1L1=860woL3=860(150)(123)=34560 lb⋅ft2
6A2ˉb2L2=ΣPbL(L2−b2)=400(9)12(122−92)+300(4)12(122−42)
6A2ˉb2L2=31700 lb⋅ft2
Thus,
0+2M2(12+12)+M3(12)+34560+31700=0
48M2+12M3=−66260 ← equation (1)
Apply three-moment equation to middle and last spans
M2L2+2M3(L2+L3)+M4L3+6A2ˉa2L2+6A3ˉb3L3=0
Where,
L2=L3=12 ft
L3=3 ft
M4=−4(50)(2)=−400 lb⋅ft
6A2ˉa2L2=ΣPbL(L2−a2)=400(3)12(122−32)+300(8)12(122−82)
6A2ˉa2L2=29500 lb⋅ft2
6A3ˉb3L3=14woL3=14(50)(123)=21600 lb⋅ft2
Thus,
M2(12)+2M3(12+12)−400(12)+29500+21600=0
12M2+48M3=−46300 ← equation (2)
Solving equations (1) and (2) simultaneously
M2=−1215.22 lb⋅ft answer
M3=−660.78 lb⋅ft answer