From
Solution 824, M
2 = -2.9 kN·m and M
3 = -6.1 kN·m.
From the first span
2V1=2(4)
V1=4 kN
L1R1′=M2
4R1′=2.9
R1′=0.725 kN
R1L=V1−R1′=4−0.725
R1L=3.275 kN
R1R=V1+R1′=4+0.725
R1R=4.725 kN
From the middle span
2V2=10
V2=5 kN
L2R2′=M3−M2
2R2′=6.1−2.9
R2′=1.6 kN
R2L=V2−R2′=5−1.6
R2L=3.4 kN
R2R=V2+R2′=5+1.6
R2R=6.6 kN
From the third span
2V3=4(4)
V3=8 kN
L3R3′=M3$
4R3′=6.1
R3′=1.525 kN
R3L=V3+R3′=8+1.525
R3L=9.525 kN
R3R=V3−R3′=8−1.525
R3R=6.475 kN
Thus,
R1=3.275 kN answer
R2=4.725+3.4=8.125 kN answer
R3=6.6+9.525=16.125 kN answer
R4=8−1.525=6.475 kN answer
x13275=43275+4725
x1=1.6375 m
x29525=49525+6475
x2=2.38125 m
MA=12x1(3275)=12(1.6375)(3275)=2681.41 N⋅m
MB=M2+3400(1)=−2900+3400=500 N⋅m
MC=M3+12x2(9525)=−6100+12(2.38125)(9525)=5240.70 N⋅m
Hence,
Mmax(+)=MC=5.241 kN⋅m answer