M1L1+2M2(L1+L2)+M3L2+6A1ˉa1L1+6A2ˉb2L2=0
Where
L1=L2=L
M1=M3=−wox(12x)=−12wox2
6A1ˉa1L1=6A2ˉb2L2=14woL3
Thus,
−12wox2(L)+2M2(L+L)−12wox2(L)+14woL3+14woL3=0
4LM2−wox2L+12woL3=0
M2=14wox2−18woL2
ΣFV=0
3R=wo(2L+2x)
R=23wo(L+x)
M2=ΣMto the right of R2
M2=RL−wo(L+x)[12(L+x)]
14wox2−18woL2=23wo(L+x)L−12wo(L+x)2
14wox2−18woL2=23wo(L+x)L−12wo(L2+2Lx+x2)
14wox2−18woL2=23woL2+23woLx−12woL2−woLx−12wox2
34wox2++13woLx−724woL2=0
18x2+8Lx−7L2=0
x=−8L±√(8L)2−4(18)(−7L2)2(18)=−8L±√64L2+504L236
x=−8L±2√142L36=−4−√14218L and −4+√14218L
Use,
x=−4+√14218L=0.4398L answer