From the first span
L1V1L=M
9V1L=300
V1L=33.33lb=V1R
L1R1′=M2
9R1′=180
R1′=20 lb
R1L=V1L+R1′=33.33+20
R1L=53.33 lb downward
R1L=V1R+R1′=33.33+20
R1L=53.33 lb
From the second span
ΣMV2R=0
9V2L=12(6)(100)[13(6)]
V2L=66.67 lb
ΣMV2L=0
9V2R=12(6)(100)[3+23(6)]
V2R=233.33 lb
L2R2′=M2
9R2′=180
R2′=20 lb
R2L=V2L+R2′=66.67+20
R2L=86.67 lb
R2R=V2R−R2′=233.33−20
R2R=213.33 lb
Support reactions
R1=53.33 lb downward answer
R2=53.33+86.67=140 lb answer
R3=213.33 lb answer
From the shear diagram
x286.67=6286.67+213.33
x=3.225 ft
Maximum positive moment
Mmax(+)=MA=M2+Positive area in shear diagram
Mmax(+)=−180+3(86.67)+23x(86.67)
Mmax(+)=−180+3(86.67)+23(3.225)(86.67)
Mmax(+)=266.35 lb⋅ft answer