$\Sigma M_{R2} = 0$
$6R_1 = 4w_o(2)$
$R_1 = \frac{4}{3}w_o \, \text{ N} $
$\Sigma M_{R1} = 0$
$6R_2 = 4w_o(4)$
$R_2 = \frac{8}{3}w_o \, \text{ N} $
From the shear diagram
$\dfrac{x}{\frac{4}{3}w_o} = \dfrac{4 - x}{\frac{8}{3}w_o}$
$2x = 4 - x$
$x = \frac{4}{3} \, \text{ m}$
Maximum moment = sum of area in Shear Diagram at the left of point of zero shear
$M_{max} = 2(\frac{4}{3}w_o) + \frac{1}{2}(\frac{4}{3})(\frac{4}{3}w_o)$
$M_{max} = \frac{32}{9}w_o \, \text{ N}\cdot\text{m}$
Based on allowable flexural stress
$f_b = \dfrac{Mc}{I}$
Where
c = 150 mm
I = 200(3003)/12 - 175(2503)/12
I = 222 135 416.67 mm4
Thus,
$10 = \dfrac{\frac{32}{9}w_o(1000)(150)}{222\,135\,416.67}$
$w_o = 4165.04 \, \text{ N/m}$
Based on allowable shear stress
$f_v = \dfrac{VQ}{Ib}$
Where
Q = 200(25)(137.5) + 125(25)(62.5)
Q = 882 812.5 mm3
I = 222 135 416.67 mm4
b = 25 mm
Thus,
$1.0 = \dfrac{\frac{8}{3}w_o(882 812.5)}{222\,135\,416.67(25)}$
$w_o = 2358.96 \, \text{ N/m}$
For safe value of wo, use wo = 2358.96 N/m. answer
bakit po hindi niyo sinama
hindi po ba dapat 2358.960 N/m yung safe load? di niyo po ata naisama yung base na 25 sa pagcalculate
Tnx. Na edit ko na.
In reply to bakit po hindi niyo sinama by owen (not verified)
Tnx. Na edit ko na.