$\Sigma F_V = 0$
$P_1 + P_2 + P_3 = 490.5$ → Equation (1)
$\Sigma M_1 = 0$
$P_2(1) + P_3(3) = 490.5(1.5)$
$P_2 + 3P_3 = 735.75$ → Equation (2)
$\dfrac{\delta_2 - \delta_1}{1} = \dfrac{\delta_3 - \delta_1}{3}$
$\delta_2 = \frac{1}{3}\delta_3 + \frac{2}{3}\delta_1$
$\dfrac{64P_2(50^3)(24)}{83\,000(10^4)} = \dfrac{1}{3} \left[ \dfrac{64P_3(75^3)(48)}{42\,000(20^4)} \right] + \dfrac{2}{3} \left[ \dfrac{64P_1(50^3)(24)}{83\,000(10^4)} \right]$
$\frac{3}{830}P_2 = \frac{9}{8960}P_3 + \frac{1}{415}P_1$
$\frac{3}{166}P_2 = \frac{9}{1792}P_3 + \frac{1}{83}P_1$ → Equation (3)
From Equation (1)
$P_1 = 490.5 - P_2 - P_3$
Substitute P1 to Equation (3)
$\frac{3}{166}P_2 = \frac{9}{1792}P_3 + \frac{1}{83}(490.5 - P_2 - P_3)$
$\frac{3}{166}P_2 = \frac{9}{1792}P_3 + \frac{981}{166} - \frac{1}{83}P_2 - \frac{1}{83}P_3$
$\frac{5}{166}P_2 = \frac{981}{166} - \frac{1045}{148\,736}P_3$ → Equation (4)
From Equation (2)
$P_2 = 735.75 - 3P_3 = \frac{2943}{4} - 3P_3$
Substitute P2 to Equation (4)
$\frac{5}{166}(\frac{2943}{4} - 3P_3) = \frac{981}{166} - \frac{1045}{148\,736}P_3)$
$(\frac{1045}{148\,736} - \frac{5}{166})P_3 = \frac{981}{166} - \frac{14\,715}{664}$
$P_3 = 195.01 \, \text{N}$
$P_2 = 735.75 - 3(195.01) = 150.72 \, \text{N}$
$P_1 = 490.5 - 150.72 - 195.01 = 144.77 \, \text{N}$
$\tau_{max} = \dfrac{16PR}{\pi d^3} \left( 1 + \dfrac{d}{4R} \right)$
For steel at left:
$\tau_{max1} = \dfrac{16(144.77)(50)}{\pi (10^3)} \left[ 1 + \dfrac{10}{4(50)} \right] = 38.709 \, \text{ MPa}$ answer
For steel at right:
$\tau_{max2} = \dfrac{16(150.72)(50)}{\pi (10^3)} \left[ 1 + \dfrac{10}{4(50)} \right] = 40.300 \, \text{ MPa}$ answer
For phosphor bronze:
$\tau_{max3} = \dfrac{16(195.01)(75)}{\pi (20^3)} \left[ 1 + \dfrac{20}{4(75)} \right] = 9.932 \, \text{ MPa}$ answer