Before temperature change:
Pbr=σbrAbr
Pbr=2000(1.5)
Pbr=3000lb compression
ΣFH=0
Pst=Pbr=3000lb tension
σst=Pst/Ast=3000/0.75
σst=4000psi tensile stress
δ=σLE
a=δbr=2000L12×106=1.67×10−4L shortening
b=δst=4000L29×106=1.38×10−4L lengthening
With temperature rise of 100°F: (Assuming complete freedom)
δT=αLΔT
δTbr=(10.5×10−6)L(100)
δTbr=1.05×10−3L>a
δTst=(6.5×10−6)L(100)
δTst=6.5×10−4L
δTbr−a=1.05×10−3L−1.67×10−4L
δTbr−a=8.83×10−4L
δTst+b=6.5×10−4L+1.38×10−4L
δTst+b=7.88×10−4L
δTbr−a>δTst+b (see figure below)
δTbr−a−d=b+δTst+c
(1.05×10−3L)−(1.67×10−4L)−(σLE)br=(1.38×10−4L)+(6.5×10−4L)+(PLAE)st
(8.83×10−4L)−σbrL12×106=(7.88×10−4L)+PstL0.75(29×106)
9.5×10−4−Pbr1.5(12×106)=Pst0.75(29×106)
Pst=20662.5−1.2083Pbr → Equation (1)
ΣFH=0
Pbr=Pst → Equation (2)
Equations (1) and (2)
Pst=20662.5−1.2083Pst
Pst=9356.74lb
Pbr=9356.74lb
σ=P/A
σbr=9356.741.5=6237.83psi compressive stress answer
σst=9356.740.75=12475.66psi tensile stress answer