$\sin 60^\circ = \dfrac{x}{4}$
$x = 4 \sin 60^\circ$
$\tan \theta = \dfrac{6}{x}$
$\tan \theta = \dfrac{6}{4 \sin 60^\circ}$
$\tan \theta = \sqrt{3}$
$\theta = 60^\circ$
Because θ = 60°, T is perpendicular to AB.
$\Sigma M_A = 0$
$4T = 200(2 \cos 30^\circ) + 100(6 \cos 30^\circ)$
$T = 216.51 \, \text{ lb}$ answer
$\Sigma F_H = 0$
$A_H = T \cos \theta$
$A_H = 216.51 \cos 60^\circ$
$A_H = 108.25 \, \text{ lb}$ answer
$\Sigma F_V = 0$
$A_V + T \sin \theta = 200 + 100$
$A_V + 216.51 \sin 60^\circ = 200 + 100$
$A_V = 112.50 \, \text{ lb}$ answer