Skip to main content
HomeMATHalinoEngineering Math Review

Search form

Login • Register

  • Home
    • Recent
    • Glossary
    • About
  • Algebra
    • Derivation of Formulas
    • Engineering Economy
    • General Engineering
  • Trigo
    • Spherical Trigonometry
  • Geometry
    • Solid Geometry
    • Analytic Geometry
  • Calculus
    • Integral Calculus
    • Differential Equations
    • Advance Engineering Mathematics
  • Mechanics
    • Strength of Materials
    • Structural Analysis
  • CE
    • CE Board: Math
    • CE Board: Hydro Geo
    • CE Board: Design
    • Surveying
    • Hydraulics
    • Timber Design
    • Reinforced Concrete
    • Geotechnical Engineering
  • Courses
    • Exams
    • Old MCQ
  • Forums
    • Basic Engineering Math
    • Calculus
    • Mechanics
    • General Discussions
  • Blogs

Breadcrumbs

You are here:

  1. Home
  2. non-parallel forces

non-parallel forces

Problem 355 | Equilibrium of Non-Concurrent Force System

Problem 355
Determine the reactions at A and B on the Fink truss shown in Fig. P-355. Members CD and FG are respectively perpendicular to AE and BE at their midpoints.
 

Fink truss with support at -30 degree slope

 

  • Read more about Problem 355 | Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Problem 354 | Equilibrium of Non-Concurrent Force System

Problem 354
Compute the total reactions at A and B on the truss shown in Fig. P-354.
 

354-roof-truss.gif

 

  • Read more about Problem 354 | Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Problem 352 | Equilibrium of Non-Concurrent Force System

Problem 352
A pulley 4 ft in diameter and supporting a load 200 lb is mounted at B on a horizontal beam as shown in Fig. P-352. The beam is supported by a hinge at A and rollers at C. Neglecting the weight of the beam, determine the reactions at A and C.
 

Pulley mounted at the midspan of simple beam

 

  • Read more about Problem 352 | Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Problem 350 | Equilibrium of Non-Concurrent Force System

Problem 350
Compute the total reactions at A and B for the truss shown in Fig. P-350.
 

Overhang truss at both ends

 

  • Read more about Problem 350 | Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Problem 349 | Equilibrium of Non-Concurrent Force System

Problem 349
The truss shown in Fig. P-349 is supported on roller at A and hinge at B. Solve for the components of the reactions.
 

Truss supported by a roller and a hinge

 

  • Read more about Problem 349 | Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Problem 348 | Equilibrium of Non-Concurrent Force System

Problem 348
The frame shown in Fig. P-348 is supported in pivots at A and B. Each member weighs 5 kN/m. Compute the horizontal reaction at A and the horizontal and vertical components of the reaction at B.
 

Simple Frame Supported in Pivots

 

  • Read more about Problem 348 | Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Problem 347 | Equilibrium of Non-Concurrent Force System

Problem 347
Repeat Problem 346 if the cable pulls the boom AB into a position at which it is inclined at 30° above the horizontal. The loads remain vertical.
 

Cable and boom structure

 

  • Read more about Problem 347 | Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Problem 346 | Equilibrium of Non-Concurrent Force System

Problem 346
A boom AB is supported in a horizontal position by a hinge A and a cable which runs from C over a small pulley at D as shown in Fig. P-346. Compute the tension T in the cable and the horizontal and vertical components of the reaction at A. Neglect the size of the pulley at D.
 

Cable and boom structure

 

  • Read more about Problem 346 | Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Equilibrium of Non-Concurrent Force System

There are three equilibrium conditions that can be used for non-concurrent, non-parallel force system.
 

The sum of all forces in the x-direction or horizontal is zero.

$\Sigma F_x = 0$   or   $\Sigma F_H = 0$

 

  • Read more about Equilibrium of Non-Concurrent Force System
  • Log in or register to post comments

Resultant of Non-Concurrent Force System

The resultant of non-concurrent force system is defined according to magnitude, inclination, and position.
 

The magnitude of the resultant can be found as follows

$R_x = \Sigma F_x$

$R_y = \Sigma F_y$

$R = \sqrt{{R_x}^2 + {R_y}^2}$

 

  • Read more about Resultant of Non-Concurrent Force System
  • Log in or register to post comments
Home • Forums • Blogs • Glossary • Recent
About • Contact us • Terms of Use • Privacy Policy • Hosted by Linode • Powered by Drupal
MATHalino - Engineering Mathematics • Copyright 2025 Jhun Vert • All rights reserved