## Problem 361 | Equilibrium of Non-Concurrent Force System

**Problem 361**

Referring to Problem 359, if T = 30 kN and x = 1 m, determine the angle θ at which the bar will be inclined to the horizontal when it is in a position of equilibrium.

**Problem 361**

Referring to Problem 359, if T = 30 kN and x = 1 m, determine the angle θ at which the bar will be inclined to the horizontal when it is in a position of equilibrium.

**Problem 360**

Referring to Problem 359, what value of T acting at x = 1 m from B will keep the bar horizontal.

**Problem 359**

A 4-m bar of negligible weight rests in a horizontal position on the smooth planes shown in Fig. P-359. Compute the distance x at which load T = 10 kN should be placed from point B to keep the bar horizontal.

**Problem 358**

A bar AE is in equilibrium under the action of the five forces shown in Fig. P-358. Determine P, R, and T.

**Problem 347**

Repeat Problem 346 if the cable pulls the boom AB into a position at which it is inclined at 30° above the horizontal. The loads remain vertical.

Problem 346 | Equilibrium of Non-Concurrent Force System

**Problem 346**

A boom AB is supported in a horizontal position by a hinge A and a cable which runs from C over a small pulley at D as shown in Fig. P-346. Compute the tension T in the cable and the horizontal and vertical components of the reaction at A. Neglect the size of the pulley at D.

Problem 339 | Equilibrium of Parallel Force System

**Problem 339**

The differential chain hoist shown in Fig. P-339 consists of two concentric pulleys rigidly fastened together.

The pulleys form two sprockets for an endless chain looped over them in two loops. In one loop is mounted a movable pulley supporting a load W. Neglecting friction, determine the maximum load W that can just be raised by a pull P supplied as shown.

- Read more about Problem 339 | Equilibrium of Parallel Force System
- Log in or register to post comments

Problem 329 | Equilibrium of Force System

**Problem 329**

Two cylinders A and B, weighing 100 lb and 200 lb respectively, are connected by a rigid rod curved parallel to the smooth cylindrical surface shown in Fig. P-329. Determine the angles α and β that define the position of equilibrium.

- Read more about Problem 329 | Equilibrium of Force System
- Log in or register to post comments

**Problem 328**

Two weightless bars pinned together as shown in Fig. P-328 support a load of 35 kN.

- Read more about Problem 328 | Equilibrium of Force System
- Log in or register to post comments

**Problem 327**

Forces P and F acting along the bars shown in Fig. P-327 maintain equilibrium of pin A. Determine the values of P and F.

- Read more about Problem 327 | Equilibrium of Force System
- Log in or register to post comments