Stone from the ground:

$s = v_it + \frac{1}{2}at^2$
$h_1 = v_{i1}t - \frac{1}{2}gt^2$

$182.88 - 60.96 = 91.44t - \frac{1}{2}(9.81)t^2$

$4.905t^2 - 91.44t + 121.92 = 0$

$t = 17.19 \, \text{ sec and } \, 1.44 \, \text{ sec}$

Stone from the top of the tower:

Let t_{2} = time to wait before dropping the second stone

$h = \frac{1}{2}g(t - t_2)^2$

With t = 17.19 sec

$60.96 = \frac{1}{2}(9.81)(17.19 - t_2)^2$

$t_2 = 13.67 \, \text{ sec}$

With t = 1.44 sec

$60.96 = \frac{1}{2}(32.2)(1.44 - t_2)^2$

$t_2 = -2.08 \, \text{ sec}$ (meaningless)

Use $t_2 = 13.67 \, \text{ sec}$ *answer*

## hi, pano po nakuha yung 17.19

hi, pano po nakuha yung 17.19 sec sa translation problem? thankyou

## Use quadratic formula or use

In reply to hi, pano po nakuha yung 17.19 by Jane San Vicente

Use quadratic formula or use the quadratic mode of your calculator.

## Sir/ maam, ask ko lang po

Sir/ maam, ask ko lang po pano po ba na solve 13. 67 sec and bakit yan po ang answer? salamat po