Stone from the ground:
$s = v_it + \frac{1}{2}at^2$
$h_1 = v_{i1}t - \frac{1}{2}gt^2$
$182.88 - 60.96 = 91.44t - \frac{1}{2}(9.81)t^2$
$4.905t^2 - 91.44t + 121.92 = 0$
$t = 17.19 \, \text{ sec and } \, 1.44 \, \text{ sec}$
Stone from the top of the tower:
Let t2 = time to wait before dropping the second stone
$h = \frac{1}{2}g(t - t_2)^2$
With t = 17.19 sec
$60.96 = \frac{1}{2}(9.81)(17.19 - t_2)^2$
$t_2 = 13.67 \, \text{ sec}$
With t = 1.44 sec
$60.96 = \frac{1}{2}(32.2)(1.44 - t_2)^2$
$t_2 = -2.08 \, \text{ sec}$ (meaningless)
Use $t_2 = 13.67 \, \text{ sec}$ answer
Comments
hi, pano po nakuha yung 17.19
hi, pano po nakuha yung 17.19 sec sa translation problem? thankyou
Use quadratic formula or use
Use quadratic formula or use the quadratic mode of your calculator.