Stone from the ground:
$s = v_it + \frac{1}{2}at^2$
$h_1 = v_{i1}t - \frac{1}{2}gt^2$
$182.88 - 60.96 = 91.44t - \frac{1}{2}(9.81)t^2$
$4.905t^2 - 91.44t + 121.92 = 0$
$t = 17.19 \, \text{ sec and } \, 1.44 \, \text{ sec}$
Stone from the top of the tower:
Let t2 = time to wait before dropping the second stone
$h = \frac{1}{2}g(t - t_2)^2$
With t = 17.19 sec
$60.96 = \frac{1}{2}(9.81)(17.19 - t_2)^2$
$t_2 = 13.67 \, \text{ sec}$
With t = 1.44 sec
$60.96 = \frac{1}{2}(32.2)(1.44 - t_2)^2$
$t_2 = -2.08 \, \text{ sec}$ (meaningless)
Use $t_2 = 13.67 \, \text{ sec}$ answer
hi, pano po nakuha yung 17.19
hi, pano po nakuha yung 17.19 sec sa translation problem? thankyou
Use quadratic formula or use
In reply to hi, pano po nakuha yung 17.19 by Jane San Vicente
Use quadratic formula or use the quadratic mode of your calculator.
Sir/ maam, ask ko lang po
Sir/ maam, ask ko lang po pano po ba na solve 13. 67 sec and bakit yan po ang answer? salamat po