$\theta = \arctan \dfrac{60}{x}$
$\dfrac{d\theta}{dt} = \dfrac{\dfrac{-60\dfrac{dx}{dt}}{x^2}}{1 + \left( \dfrac{60}{x} \right)^2}$
$\dfrac{d\theta}{dt} = \dfrac{-60\dfrac{dx}{dt}}{x^2\left( 1 + \dfrac{3600}{x^2} \right)}$
$\dfrac{d\theta}{dt} = \dfrac{-60\dfrac{dx}{dt}}{x^2\left( 1 + \dfrac{3600}{x^2} \right)}$
$\dfrac{d\theta}{dt} = \dfrac{-60\dfrac{dx}{dt}}{x^2 + 3600}$
when s = 100 ft
$x = \sqrt{100^2 - 60^2}$
$x = 80 \, \text{ ft}$
$\dfrac{d\theta}{dt} = \dfrac{-60(88/15)}{80^2 + 3600}$
$\dfrac{d\theta}{dt} = \dfrac{-352}{10\,000}$
$\dfrac{d\theta}{dt} = -\dfrac{22}{625} \,\, \text{ rad/sec}$
$\dfrac{d\theta}{dt} = \dfrac{22}{625} \, \text{ rad/sec decreasing}$ answer