Chapter 4 - Trigonometric and Inverse Trigonometric Functions
Differentiation of Trigonometric Functions
Trigonometric identities and formulas are basic requirements for this section. If u is a function of x, then
1. ddx(sinu)=cosududx
2. ddx(cosu)=−sinududx
3. ddx(tanu)=sec2ududx
4. ddx(cotu)=−csc2ududx
5. ddx(secu)=secutanududx
6. ddx(cscu)=−cscucotududx
Differentiation of Inverse Trigonometric Functions
In the formula below, u is any function of x.
1. ddxarcsinu=dudx√1−u2
2. ddxarccosu=−dudx√1−u2
3. ddxarctanu=dudx1+u2
4. ddxarccotu=−dudx1+u2
5. ddxarcsecu=dudxu√u2−1
6. ddxarccscu=−dudxu√u2−1