$\theta = \arctan \dfrac{6 + 4t}{10 + 2t}$
$\theta = \arctan \dfrac{3 + 2t}{5 + t}$
$\dfrac{d\theta}{dt} = \dfrac{\dfrac{(5 + t)(2) - (3 + 2t)(1)}{(5 + t)^2}}{1+ \left( \dfrac{3 + 2t}{5 + t} \right)^2}$
$\dfrac{d\theta}{dt} = \dfrac{\dfrac{10 + 2t - 3 - 2t}{(5 + t)^2}}{\dfrac{(5 + t)^2 + (3 + 2t)^2}{(5 + t)^2}}$
$\dfrac{d\theta}{dt} = \dfrac{7}{(5 + t)^2 + (3 + 2t)^2}$
when $\theta = 45^\circ$
$6 + 4t = 10 + 2t$
$2t = 4$
$t = 2 \, \text{ sec}$
Thus,
$\dfrac{d\theta}{dt} = \dfrac{7}{(5 + 2)^2 + [ \, 3 + 2(2) \, ]^2}$
$\dfrac{d\theta}{dt} = \dfrac{7}{49 + 49}$
$\dfrac{d\theta}{dt} = \dfrac{7}{98}$
$\dfrac{d\theta}{dt} = \dfrac{1}{14} \, \text{ rad/sec}$ answer